Article

Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.

Department of Physics, Nanoscience & Scanning Probe Microscopy Group, McGill University, Montreal, Quebec, Canada.
Biophysical Journal (Impact Factor: 3.67). 05/2005; 88(4):2994-3007. DOI: 10.1529/biophysj.104.046649
Source: PubMed

ABSTRACT Complex rheology of airway smooth muscle cells and its dynamic response during contractile stimulation involves many molecular processes, foremost of which are actomyosin cross-bridge cycling and actin polymerization. With an atomic force microscope, we tracked the spatial and temporal variations of the viscoelastic properties of cultured airway smooth muscle cells. Elasticity mapping identified stiff structural elements of the cytoskeletal network. Using a precisely positioned microscale probe, picoNewton forces and nanometer level indentation modulations were applied to cell surfaces at frequencies ranging from 0.5 to 100 Hz. The resulting elastic storage modulus (G') and dissipative modulus (G'') increased dramatically, with hysteresivity (eta = G''/G') showing a definitive decrease after stimulation with the contractile agonist 5-hydroxytryptamine. Frequency-dependent assays showed weak power-law structural damping behavior and universal scaling in support of the soft-glassy material description of cellular biophysics. Additionally, a high-frequency component of the loss modulus (attributed to cellular Newtonian viscosity) increased fourfold during the contractile process. The complex shear modulus showed a strong sensitivity to the degree of actin polymerization. Inhibitors of myosin light chain kinase activity had little effect on the stiffening response to contractile stimulation. Thus, our measurements appear to be particularly well suited for characterization of dynamic actin rheology during airway smooth muscle contraction.

0 Bookmarks
 · 
56 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge of cell mechanical properties, such as elastic modulus, is essential to understanding the mechanisms by which cells carry out many integrated functions in health and disease. Cellular stiffness is regulated by the composition, structural organization, and indigenous mechanical stress (or prestress) borne by the cytoskeleton. Current methods for measuring stiffness and cytoskeletal prestress of living cells necessitate either limited spatial resolution but with high speed, or spatial maps of the entire cell at the expense of long imaging times. We have developed a novel technique, called biomechanical imaging, for generating maps of both cellular stiffness and prestress that requires less than 30 s of interrogation time, but which provides subcellular spatial resolution. The technique is based on the ability to measure tractions applied to the cell while simultaneously observing cell deformation, combined with capability to solve an elastic inverse problem to find cell stiffness and prestress distributions. We demonstrated the application of this technique by carrying out detailed mapping of the shear modulus and cytoskeletal prestress distributions of 3T3 fibroblasts, making no assumptions regarding those distributions or the correlation between them. We also showed that on the whole cell level, the average shear modulus is closely associated with the average prestress, which is consistent with the data from the literature. Data collection is a straightforward procedure that lends itself to other biochemical/biomechanical interventions. Biomechanical imaging thus offers a new tool that can be used in studies of cell biomechanics and mechanobiology where fast imaging of cell properties and prestress is desired at subcellular resolution.
    Biomechanics and Modeling in Mechanobiology 09/2013; · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose a magnetic force modulation method to measure the stiffness and viscosity of living cells using a modified AFM apparatus. An oscillating magnetic field makes a magnetic cantilever oscillate in contact with the sample, producing a small AC indentation. By comparing the amplitude of the free cantilever motion (A0) with the motion of the cantilever in contact with the sample (A1), we determine the sample stiffness and viscosity. To test the method, the frequency-dependent stiffness of 3T3 fibroblasts was determined as a power law ks(f) = α + β(f/f[combining macron])(γ) (α = 7.6 × 10(-4) N m(-1), β = 1.0 × 10(-4) N m(-1), f[combining macron] = 1 Hz, γ = 0.6), where the coefficient γ = 0.6 is in good agreement with rheological data of actin solutions with concentrations similar to those in cells. The method also allows estimation of the internal friction of the cells. In particular we found an average damping coefficient of 75.1 μN s m(-1) for indentation depths ranging between 1.0 μm and 2.0 μm.
    Soft Matter 03/2014; 10(13):2141-9. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanical phenotyping of cells by atomic force microscopy (AFM) was proposed as a novel tool in cancer cell research as cancer cells undergo massive structural changes, comprising remodelling of the cytoskeleton and changes of their adhesive properties. In this work, we focused on the mechanical properties of human breast cell lines with different metastatic potential by AFM-based microrheology experiments. Using this technique, we are not only able to quantify the mechanical properties of living cells in the context of malignancy, but we also obtain a descriptor, namely the loss tangent, which provides model-independent information about the metastatic potential of the cell line. Including also other cell lines from different organs shows that the loss tangent (G″/G') increases generally with the metastatic potential from MCF-10A representing benign cells to highly malignant MDA-MB-231 cells.
    Open biology. 05/2014; 4(5).

Full-text

View
15 Downloads
Available from
May 21, 2014