The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci USA

Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 715 Albany Street, Boston, MA 02118-2932, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 03/2005; 102(5):1548-53. DOI: 10.1073/pnas.0409460102
Source: PubMed


The vast majority of eukaryotes (fungi, plants, animals, slime mold, and euglena) synthesize Asn-linked glycans (Alg) by means of a lipid-linked precursor dolichol-PP-GlcNAc2Man9Glc3. Knowledge of this pathway is important because defects in the glycosyltransferases (Alg1-Alg12 and others not yet identified), which make dolichol-PP-glycans, lead to numerous congenital disorders of glycosylation. Here we used bioinformatic and experimental methods to characterize Alg glycosyltransferases and dolichol-PP-glycans of diverse protists, including many human pathogens, with the following major conclusions. First, it is demonstrated that common ancestry is a useful method of predicting the Alg glycosyltransferase inventory of each eukaryote. Second, in the vast majority of cases, this inventory accurately predicts the dolichol-PP-glycans observed. Third, Alg glycosyltransferases are missing in sets from each organism (e.g., all of the glycosyltransferases that add glucose and mannose are absent from Giardia and Plasmodium). Fourth, dolichol-PP-GlcNAc2Man5 (present in Entamoeba and Trichomonas) and dolichol-PP- and N-linked GlcNAc2 (present in Giardia) have not been identified previously in wild-type organisms. Finally, the present diversity of protist and fungal dolichol-PP-linked glycans appears to result from secondary loss of glycosyltransferases from a common ancestor that contained the complete set of Alg glycosyltransferases.

Download full-text


Available from: Daniel J Kelleher, Oct 05, 2015
10 Reads
  • Source
    • "Rapid production, scalability and cost efficiency are the major advantages of such systems, making them attractive for vaccine development and manufacturing (Rybicki, 2010; Yusibov et al., 2011), particularly when short production cycles are required to address new pathogen strains emerging due to polymorphisms, genetic drift and the evolution of pathogen populations, resulting in sudden pandemics. Because the genus Plasmodium lacks essential glycosyltransferases (von Itzstein et al., 2008; Samuelson et al., 2005), P. falciparum proteins do not carry N-linked glycans in the native context. Nevertheless, several P. falciparum proteins contain NxS/T motifs that are targets for N-linked glycosylation when these proteins are expressed in heterologous eukaryotic hosts (Kedees et al., 2002). "
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the most promising malaria vaccine candidate antigens is the Plasmodium falciparum apical membrane antigen 1 (PfAMA1). Several studies have shown that this blood-stage antigen can induce strong parasite growth inhibitory antibody responses. PfAMA1 contains up to six recognition sites for N-linked glycosylation, a post-translational modification that is absent in P. falciparum. To prevent any potential negative impact of N-glycosylation, the recognition sites have been knocked out in most PfAMA1 variants expressed in eukaryotic hosts. However, N-linked glycosylation may increase efficacy by improving immunogenicity and/or focusing the response towards relevant epitopes by glycan masking. We describe the production of glycosylated and nonglycosylated PfAMA1 in Nicotiana benthamiana and its detailed characterization in terms of yield, integrity and protective efficacy. Both PfAMA1 variants accumulated to high levels (>510 μg/g fresh leaf weight) after transient expression, and high-mannose-type N-glycans were confirmed for the glycosylated variant. No significant differences between the N. benthamiana and Pichia pastoris PfAMA1 variants were detected in conformation-sensitive ligand-binding studies. Specific titres of >2 × 106 were induced in rabbits, and strong reactivity with P. falciparum schizonts was observed in immunofluorescence assays, as well as up to 100% parasite growth inhibition for both variants, with IC50 values of ~35 μg/mL. Competition assays indicated that a number of epitopes were shielded from immune recognition by N-glycans, warranting further studies to determine how glycosylation can be used for the directed targeting of immune responses. These results highlight the potential of plant transient expression systems as a production platform for vaccine candidates.
    Plant Biotechnology Journal 09/2014; 13(2). DOI:10.1111/pbi.12255 · 5.75 Impact Factor
  • Source
    • "The synthesis of the dolichol-linked glycan and its transfer to proteins are identical in both, human cells and C. albicans [3] [4] (see Table 1 and Figure 1). In fact, these processes are quite conserved among eukaryotic cells and there are only a handful of organisms where these stages are slightly different, such as trypanosomatids, some protists, and the fungal pathogen Cryptococcus neoformans [5] [6]. The eukaryotic N-linked glycosylation pathway is divided in two sequential stages: (a) synthesis in the rough endoplasmic reticulum (rER) of the dolichol-linked glycan precursor Dol-PP-GlcNAc 2 Man 9 Glc 3 and its transfer to a nascent protein and (b) the N-linked glycan processing and maturation in the rER and Golgi (Figure 1). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans: N-linked glycosylation, O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets for C. albicans infection.
    International Journal of Microbiology 07/2014; 2014:267497. DOI:10.1155/2014/267497
  • Source
    • "We detected epitope-tagged variants of the epimerase in the ER, and the transporter mainly showed distribution in the perinuclear ER and early ESVs, where its signal overlapped with that of CWP1. N-glycosylation of Giardia proteins is restricted to addition of GlcNAc1-2 to asparagine [67]. Consistent with this, the parasite lacks genes required for synthesis of the typical eukaryotic core-oligosaccharide GlcNAc2Man9Glc3 and for further N-glycan processing in the ER and Golgi. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs), mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs), for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER) which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694.
    PLoS ONE 04/2014; 9(4):e94089. DOI:10.1371/journal.pone.0094089 · 3.23 Impact Factor
Show more