Congenital disorder of glycosylation (CDG) type Ie

Hospital Universitario Ramón y Cajal, Madrid, Madrid, Spain
Journal of Inherited Metabolic Disease (Impact Factor: 3.37). 02/2004; 27(5):591-600. DOI: 10.1023/B:BOLI.0000042984.42433.d8
Source: PubMed


CDG Ie is caused by a deficiency of dolichol-phosphate-mannose synthase 1 (DPM1), an enzyme involved in N-glycan assembly in the endoplasmic reticulum. Three proteins are known to be part of the synthase complex: DPM 1, DPM2 and DPM3. Only mutations in DPM1, the catalytic subunit, have been described in three families. One was homozygous for the c274C>G (R92G) mutation in DPM1 and two others were compound heterozygous for R92G and a c628delC deletion or a c331-343del13, respectively. Clinical features were a severe infantile encephalopathy, early intractable seizures, acquired microcephaly, and some dysmorphic features. We report a patient with milder symptoms: microcephaly, dysmorphic features, developmental delay, optic atrophy, and cerebellar dysfunction without cerebellar atrophy. The patient is homozygous for a new mutation in exon 9 of the DPM1 gene (c742T>C (S248P)). Our findings extend the spectrum of CDG Ie.

7 Reads
  • Source
    • "Synthesis of Dol-P- Man is carried out by the DPM-synthase complex, consisting of DPM1-3 subunits. Mutations in DPM1 (CDG-Ie) were found in children with severe congenital visual loss, optic atrophy and seizures (Imbach et al. 2000; Kim et al. 2000), and one of the children was diagnosed with congenital frontal cortical hypoplasia (Garcia-Silva et al. 2004). Although no muscle histology was reported, all patients presented with hypotonia and increased CK. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyisoprenoid alcohols are membrane lipids that are present in every cell, conserved from archaea to higher eukaryotes. The most common form, alpha-saturated polyprenol or dolichol is present in all tissues and most organelle membranes of eukaryotic cells. Dolichol has a well defined role as a lipid carrier for the glycan precursor in the early stages of N-linked protein glycosylation, which is assembled in the endoplasmic reticulum of all eukaryotic cells. Other glycosylation processes including C- and O-mannosylation, GPI-anchor biosynthesis and O-glucosylation also depend on dolichol biosynthesis via the availability of dolichol-P-mannose and dolichol-P-glucose in the ER. The ubiquity of dolichol in cellular compartments that are not involved in glycosylation raises the possibility of additional functions independent of these protein post-translational modifications. The molecular basis of several steps involved in the synthesis and the recycling of dolichol and its derivatives is still unknown, which hampers further research into this direction. In this review, we summarize the current knowledge on structural and functional aspects of dolichol metabolites. We will describe the metabolic disorders with a defect in known steps of dolichol biosynthesis and recycling in human and discuss their pathogenic mechanisms. Exploration of the developmental, cellular and biochemical defects associated with these disorders will provide a better understanding of the functions of this lipid class in human.
    Journal of Inherited Metabolic Disease 03/2011; 34(4):859-67. DOI:10.1007/s10545-011-9301-0 · 3.37 Impact Factor
  • Source
    • "These disorders present with congenital muscular dystrophy, congenital brain and eye malformations and glycosylation defects. Patients with Walker–Warburg or muscle–eye–brain syndromes present with microphthalmia, cataract and frequently also with colobomas, and show cerebral cortex and cerebellar developmental defects (García-Silva et al., 2004; van Reeuwijk et al., 2006; Lefeber et al., 2009). It is important to note that none of these patients express glycosylation abnormalities in blood. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebellar hypoplasia and slowly progressive ophthalmological symptoms are common features in patients with congenital disorders of glycosylation type I. In a group of patients with congenital disorders of glycosylation type I with unknown aetiology, we have previously described a distinct phenotype with severe, early visual impairment and variable eye malformations, including optic nerve hypoplasia, retinal coloboma, congenital cataract and glaucoma. Some of the symptoms overlapped with the phenotype in other congenital disorders of glycosylation type I subtypes, such as vermis hypoplasia, anaemia, ichtyosiform dermatitis, liver dysfunction and coagulation abnormalities. We recently identified pathogenic mutations in the SRD5A3 gene, encoding steroid 5α-reductase type 3, in a group of patients who presented with this particular phenotype and a common metabolic pattern. Here, we report on the clinical, genetic and metabolic features of 12 patients from nine families with cerebellar ataxia and congenital eye malformations diagnosed with SRD5A3-congenital disorders of glycosylation due to steroid 5α-reductase type 3 defect. This enzyme is necessary for the reduction of polyprenol to dolichol, the lipid anchor for N-glycosylation in the endoplasmic reticulum. Dolichol synthesis is an essential metabolic step in protein glycosylation. The current defect leads to a severely abnormal glycosylation state already in the early phase of the N-glycan biosynthesis pathway in the endoplasmic reticulum. We detected high expression of SRD5A3 in foetal brain tissue, especially in the cerebellum, consistent with the finding of the congenital cerebellar malformations. Based on the overlapping clinical, biochemical and genetic data in this large group of patients with congenital disorders of glycosylation, we define a novel syndrome of cerebellar ataxia associated with congenital eye malformations due to a defect in dolichol metabolism.
    Brain 11/2010; 133(11):3210-20. DOI:10.1093/brain/awq261 · 9.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital disorder of glycosylation type Id is an inherited glycosylation disorder based on a defect of the first mannosyltransferase involved in N-glycan biosynthesis inside the endoplasmic reticulum. Only one patient with this disease has been described until now. In this article, a second patient and an affected fetus are described. The patient showed abnormal glycosylation of several plasma proteins as demonstrated by isoelectric focusing and Western blot. Lipid-linked oligosaccharides in the endoplasmic reticulum, reflecting early N-glycan assembly, revealed an accumulation of immature Man(5)GlcNAc(2)-glycans in fibroblasts of the patient. Chorion cells of the affected fetus showed the same characteristic lipid-linked oligosaccharides pattern. However, the fetus had a normal glycosylation of several plasma proteins. Some fetal glycoproteins are known to be derived from the mother, but even glycoproteins that do not cross the placenta were normally glycosylated in the affected fetus. Maternal or placental factors that partially compensate for the glycosylation defect in the fetal stage must be proposed and may be relevant for the therapy of these disorders in the future.
    Pediatric Research 09/2005; 58(2):248-53. DOI:10.1203/01.PDR.0000169963.94378.B6 · 2.31 Impact Factor
Show more