3beta-hydroxysterol Delta7-reductase and the Smith-Lemli-Opitz syndrome.

Unit on Molecular Dysmorphology, Heritable Disorders Branch, Department of Health and Human Services, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
Molecular Genetics and Metabolism (Impact Factor: 2.83). 03/2005; 84(2):112-26. DOI: 10.1016/j.ymgme.2004.09.017
Source: PubMed

ABSTRACT In the final step of cholesterol synthesis, 7-dehydrocholesterol reductase (DHCR7) reduces the double bond at C7-8 of 7-dehydrocholesterol to yield cholesterol. Mutations of DHCR7 cause Smith-Lemli-Opitz syndrome (SLOS). Over 100 different mutations of DHCR7 have been identified in SLOS patients. SLOS is a classical multiple malformation, mental retardation syndrome, and was the first human malformation syndrome shown to result from an inborn error of cholesterol synthesis. This paper reviews the biochemical, molecular, and mutational aspects of DHCR7.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.
    Drug Metabolism Reviews 04/2014; · 5.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Smith-Lemli-Opitz syndrome (SLOS) or RSH syndrome comprises multiple congenital anomalies and mental retar- dation. The underlying defect is a deficiency in the activity of 7 -sterol reductase, which decreases cholesterol and in- creases 7-dehydrocholesterol (7-DHC) levels. Our aim was to identify and evaluate the frequency of SLOS manifestations in a group of Brazilian patients. Based on our own data and those reported previously, we present a simple method that allows the estimation of probabilities favoring the diagnosis of SLOS. We evaluated 30 patients clinically and determined their plasma levels of cholesterol and 7-dehydrocholesterol. In 11 patients, the diagnosis was confirmed by ultraviolet spectrophotometry (UV). Of 19 patients with normal laboratory results, 17 showed a high probability favoring the diagnosis of SLOS. The most significant signs and symptoms observed in over 2/3 of the biochemically confirmed cases were mental retardation (10/11), delayed neuropsychomotor development (10/11), syndactyly of 2 nd /3 rd toes (10/11), and craniofacial anomalies including microcephaly (11/11), incompletely rotated ears (8/11), palpebral ptosis (10/11), anteverted nostrils (10/11), and micrognathia (9/11). Genital anomalies were found in all male patients (6/6).
    Genetics and Molecular Biology 01/2006; 29(3). · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Smith–Lemli–Opitz Syndrome (SLOS) is a congenital, autosomal recessive metabolic and developmental disorder caused by mutations in the enzyme which catalyzes the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. Herein we show that dermal fibroblasts obtained from SLOS children display increased basal levels of LC3B-II, the hallmark protein signifying increased autophagy. The elevated LC3B-II is accompanied by increased beclin-1 and cellular autophagosome content. We also show that the LC3B-II concentration in SLOS cells is directly proportional to the cellular concentration of 7DHC, suggesting that the increased autophagy is caused by 7DHC accumulation secondary to defective DHCR7. Further, the increased basal LC3B-II levels were decreased significantly by pretreating the cells with antioxidants implicating a role for oxidative stress in elevating autophagy in SLOS cells. Considering the possible source of oxidative stress, we examined mitochondrial function in the SLOS cells using JC-1 assay and found significant mitochondrial dysfunction compared to mitochondria in control cells. In addition, the levels of PINK1 which targets dysfunctional mitochondria for removal by the autophagic pathway are elevated in SLOS cells, consistent with mitochondrial dysfunction as a stimulant of mitophagy in SLOS. This suggests that the increase in autophagic activity may be protective, i.e., to remove dysfunctional mitochondria. Taken together, these studies are consistent with a role for mitochondrial dysfunction leading to increased autophagy in SLOS pathophysiology.
    Molecular Genetics and Metabolism Reports. 01/2014; 1:431–442.


Available from