Article

Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons.

Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Rua Aníbal Cunha, n(o)164, 4050-047 Porto, Portugal.
Antimicrobial Agents and Chemotherapy (Impact Factor: 4.45). 03/2005; 49(2):836-9. DOI: 10.1128/AAC.49.2.836-839.2005
Source: PubMed

ABSTRACT In 200 sulfonamide-resistant Portuguese Salmonella isolates, 152 sul1, 74 sul2, and 14 sul3 genes were detected. Class 1 integrons were always associated with sul genes, including sul3 alone in some isolates. The sul3 gene has been identified in isolates from different sources and serotypes, which also carried a class 1 integron with aadA and dfrA gene cassettes.

0 Followers
 · 
297 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Assessment of resistance genes is imperative, as they become disseminated to bacterial flora in plants and to the indigenous bacterial community, and thus ultimately contributes to the clinical problems of antibiotic resistant pathogens. The research was to assess the antibiotic characteristics and incidence of sul3 genes of Stenotrophomonas maltophilia isolates recovered from rhizospheres plant in Nkonkobe Municipality. Identification and assessment of resistance genes (sul2 and sul3 genes) were carried out using polymerase chain reaction (PCR). Analytical profile index (API) was used for biochemical characterization for identification before the PCR. Antibiotic susceptibility test was carried out using the approved guidelines and standards of Clinical Laboratory Standard Institute (CLSI). A total of 125 isolates were identified, composed of 120 (96%) from grass root rhizosphere and 5 (4%) from soil butternut root rhizosphere. In vitro antibiotic susceptibility tests showed varying resistances to meropenem (8.9%), cefuroxime (95.6 %), ampicillin-sulbactam (53.9%), ceftazidime (10.7%), cefepime (29.3 %), minocycline (2.2%), kanamycin (56.9%), ofloxacin (2.9%), levofloxacin (1.3%), moxifloxacin (2.8%), ciprofloxacin (24.3%), gatifloxacin (1.3%), polymyxin B (2.9 %), cotrimoxazole (26.1%), trimethoprim (98.6%) and aztreonam (58%). The isolates were susceptible to the fluoroquinolones (74.3-94.7%), polymycin (97.1%) and meropenem (88.1%). The newest sulphonamide resistance gene, sul3, was detected among the trimethoprim-sulfamethoxazole (cotrimoxazole)-resistant isolates, while the most frequent sulphonamide-resistant gene in animal source isolates, sul2, was not. The commensal S. maltophilia isolates in the Nkonkobe Municipality environment harbored the resistant gene sul3 as clinical counterparts, especially from the perspective of reservoirs of antibiotic resistance determinants.
    Jundishapur Journal of Microbiology 01/2015; 8(1):e13975. DOI:10.5812/jjm.13975 · 0.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Denitrification is an important pathway of nitrogen removal and nitrous oxide (N2O) production in estuarine and coastal ecosystems, and plays a significant role in counteracting aquatic eutrophication induced by excessive nitrogen loads. Estuarine and coastal environments also suffer from increasing antibiotic contamination because of the growing production and usage of antibiotics. In this study, sediment slurry incubation experiments were conducted to determine the influence of sulfamethazine (SMT, a sulphonamide antibiotic) on denitrification and the associated N2O production. Genes important for denitrification and antibiotic resistance were quantified to investigate the microbial physiological mechanisms underlying SMT's effects on denitrification. SMT was observed to significantly inhibit denitrification rates, but increasing concentrations of SMT enhanced N2O release rates. The negative exponential relationships between denitrifying gene abundances and SMT concentrations showed that SMT reduced denitrification rates by restricting the growth of denitrifying bacteria, although the presence of the antibiotic resistance gene was detected during the incubation period. These results imply that the wide occurrence of residual antibiotics in estuarine and coastal ecosystems may influence eutrophication control, greenhouse effects, and atmospheric ozone depletion by inhibiting denitrification and stimulating the release of N2O.
    Environmental Science and Technology 12/2014; 49(1). DOI:10.1021/es504433r · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated 'hot spots.' The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination.
    PLoS ONE 12/2014; 9(12):e114252. DOI:10.1371/journal.pone.0114252 · 3.53 Impact Factor

Full-text (2 Sources)

Download
64 Downloads
Available from
Jun 6, 2014