Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons.

Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Rua Aníbal Cunha, n(o)164, 4050-047 Porto, Portugal.
Antimicrobial Agents and Chemotherapy (Impact Factor: 4.45). 03/2005; 49(2):836-9. DOI: 10.1128/AAC.49.2.836-839.2005
Source: PubMed

ABSTRACT In 200 sulfonamide-resistant Portuguese Salmonella isolates, 152 sul1, 74 sul2, and 14 sul3 genes were detected. Class 1 integrons were always associated with sul genes, including sul3 alone in some isolates. The sul3 gene has been identified in isolates from different sources and serotypes, which also carried a class 1 integron with aadA and dfrA gene cassettes.

Download full-text


Available from: Luísa Peixe, Jun 18, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the transport and fate of antibiotic resistance genes in wastewater treatment plants, 12 resistance genes (ten tetracycline resistance genes, two sulfonamides genes) and class 1 integron gene (intI1) were studied in five wastewater treatment plants with different treatment processes and different sewage sources. Among these resistance genes, sulfonamides genes (sul1 and sul2) were of the most prevalent genes with detection frequency of 100 %. The effluent water contained fewer types of resistance genes than the influent in most selected plants. The abundance of five quantified resistance genes (tetG, tetW, tetX, sul1, and intI1) decreased in effluent of plants treating domestic or industrial wastewater with anaerobic/aerobic or membrane bioreactor (MBR) technologies, but tetG, tetX, sul1, and intI1 increased along the treatment units of plants treating vitamin C production wastewater by anaerobic/aerobic technology. In plant treating cephalosporins production wastewater by UASB/aerobic process, the quantities of tetG, tetX, and sul1 first decreased in anaerobic effluent water but then increased in aerobic effluent water.
    Environmental Science and Pollution Research 02/2014; 21(12). DOI:10.1007/s11356-014-2613-5 · 2.76 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the last decade, ready-to-eat (RTE) salad vegetables are gaining increasing importance in human diet. However, since they are consumed fresh, inadequate washing during processing can bring on some foodborne illnesses, like salmonellosis, since these food items have natural contamination from soil and water. During 2009-2010, a total of 81 samples were purchased arbitrarily from local markets in Ankara, and were examined for Salmonella contamination. Salmonella screening was performed by using anti-Salmonella magnetic beads system and polymerase chain reaction (PCR) identification of the suspected colonies. Then, the antibiotic resistance profiles of four Salmonella strains identified (strains RTE-1, RTE-2, RTE-3, and RTE-4) were also investigated, since the mechanism by which Salmonella spp. have accumulated antibiotic resistance genes is of interest. All strains showed resistance against sulfonamides (MIC > 128 mg/L). Further results suggested that associated sulfonamide resistance genes were encoded by the 55.0 kb plasmid of strain RTE-1 that involves no integrons. As a result of using two primers (P1254 and P1283) in randomly amplified polymorphic DNA-PCR (RAPD-PCR) analysis, two common amplicons (364 bp and 1065 bp) were determined. The findings of this study provide support to the adoption of guidelines for the prudent use of antibiotics in order to reduce the number of pathogens present on vegetable and fruit farms. Besides, since it is shown that these bacteria started to gain resistance to antibiotics, it is necessary to further investigate the prevalence of them in foods.
    01/2013; 44(2):385-91. DOI:10.1590/S1517-83822013005000047