Chemical modification of paclitaxel (Taxol) reduces P-glycoprotein interactions and increases permeation across the blood-brain barrier in vitro and in situ

Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, United States
Journal of Medicinal Chemistry (Impact Factor: 5.48). 03/2005; 48(3):832-8. DOI: 10.1021/jm040114b
Source: PubMed

ABSTRACT The purpose of this work was to introduce a chemical modification into the paclitaxel (Taxol) structure to reduce interactions with the product of the multidrug resistant type 1 (MDR1) gene, P-glycoprotein (Pgp), resulting in improved blood-brain barrier (BBB) permeability. Specifically, a taxane analogue, Tx-67, with a succinate group added at the C10 position of Taxol, was synthesized and identified as such a candidate. In comparison studies, Tx-67 had no apparent interactions with Pgp, as demonstrated by the lack of enhanced uptake of rhodamine 123 by brain microvessel endothelial cells (BMECs) in the presence of the agent. By contrast, Taxol exposure substantially enhanced rhodamine 123 uptake by BMECs through inhibition of Pgp. The transport across BMEC monolayers was polarized for both Tx-67 and Taxol with permeation in the apical to basolateral direction greater for Tx-67 and substantially reduced for Taxol relative to basolateral to apical permeation. Taxol and cyclosporin A treatments also did not enhance Tx-67 permeation across BMEC monolayers. In an in situ rat brain perfusion study, Tx-67 was demonstrated to permeate across the BBB at a greater rate than Taxol. These results demonstrate that the Taxol analogue Tx-67 had a reduced interaction with Pgp and, as a consequence, enhanced permeation across the blood-brain barrier in vitro and in situ.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The blood–brain barrier (BBB) is structurally unique and regulates what is transported into and out of the brain, thereby maintaining brain homeostasis. In inflammatory settings the BBB becomes leaky, regulation of transport is lost and neuronal function goes awry. It is caused by a number of mediators such as complement activation products, processes and networks going haywire, the exact cellular and molecular mechanisms of which remain an enigma. Complement activation byproduct, C5a signaling through its G-protein coupled receptor C5aR1/CD88 increased BBB permeability in neuroinflammatory disease settings in vivo. Studies in brain endothelial cells in vitro demonstrated that the C5a/C5aR1 signaling occurred through the NF-κB pathway and altered miRNA in these cells. Inhibition or deletion of C5aR1 was protective in brain, both in vivo and in vitro revealing their potential as possible effective therapeutic targets. Although, this is a field where progress has been made, yet a lot remains to be done due to a number of limitations. This review will deal with the advances in the experimental models, technology and the underlying mechanisms causing the BBB pathology, with an emphasis on the complement proteins and their downstream mechanisms.
    Molecular Immunology 10/2014; 61(2). DOI:10.1016/j.molimm.2014.06.039 · 3.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The object of the present study was to investigate the glioma targeting propensity of folic acid (F) decorated polymer lipid hybrid nanoparticles (PLNs) encapsulating cyclo-[Arg-Gly-Asp-D-Phe-Lys] (cRGDfK) modified paclitaxel (PtxR-FPLNs). The prepared PLNs were supposed to bypass the blood brain barrier (BBB) efficiently and subsequently target integrin rich glioma cells. The developed formulations were characterized for size, shape, drug entrapment efficiency, and in vitro release profile. PtxR-FPLNs demonstrated highest in vitro inhibitory effect, cell apoptosis andcell uptake. Pharmacokinetics and biodistribution studies showed efficacy of PtxR-FPLNs in-vivo. In vivo anti-tumor studies clearly revealed that the median survival time for Balb/C mice treated with PtxR-FPLNs (42 days) was extended significantly as compared to PtxR-PLNs (35 days), free PtxR (18 days), Ptx-FPLNs (38 days), Ptx-PLNs (30 days), free Ptx (14 days) and control group (12 days). From the results it can be concluded that the developed dual targeted nanoformulation was able to efficiently cross the BBB and significantly deliver higher amounts of drug to brain tumor for better therapeutic outcome.
    Colloids and surfaces B: Biointerfaces 01/2015; 126. DOI:10.1016/j.colsurfb.2014.12.045 · 4.29 Impact Factor
  • Source