Article

Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia.

Department of Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
Cancer Research (Impact Factor: 9.28). 02/2005; 65(2):613-21.
Source: PubMed

ABSTRACT Cancer cells generally exhibit increased glycolysis for ATP generation (the Warburg effect) due in part to mitochondrial respiration injury and hypoxia, which are frequently associated with resistance to therapeutic agents. Here, we report that inhibition of glycolysis severely depletes ATP in cancer cells, especially in clones of cancer cells with mitochondrial respiration defects, and leads to rapid dephosphorylation of the glycolysis-apoptosis integrating molecule BAD at Ser(112), relocalization of BAX to mitochondria, and massive cell death. Importantly, inhibition of glycolysis effectively kills colon cancer cells and lymphoma cells in a hypoxic environment in which the cancer cells exhibit high glycolytic activity and decreased sensitivity to common anticancer agents. Depletion of ATP by glycolytic inhibition also potently induced apoptosis in multidrug-resistant cells, suggesting that deprivation of cellular energy supply may be an effective way to overcome multidrug resistance. Our study shows a promising therapeutic strategy to effectively kill cancer cells and overcome drug resistance. Because the Warburg effect and hypoxia are frequently seen in human cancers, these findings may have broad clinical implications.

0 Bookmarks
 · 
168 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Strong consensus exists regarding the most robust environmental intervention for attenuating aging processes and increasing healthspan and lifespan: calorie restriction (CR). Over several decades, this paradigm has been replicated in numerous nonhuman models, and has been expanded over the last decade to formal, controlled human studies of CR. Given that long-term CR can create heavy challenges to compliance in human diets, the concept of a calorie restriction mimetic (CRM) has emerged as an active research area within gerontology. In past presentations on this subject, we have proposed that a CRM is a compound that mimics metabolic, hormonal, and physiological effects of CR, activates stress response pathways observed in CR and enhances stress protection, produces CR-like effects on longevity, reduces age-related disease, and maintains more youthful function, all without significantly reducing food intake, at least initially. Over 16 years ago, we proposed that glycolytic inhibition could be an effective strategy for developing CRM. The main argument here is that inhibiting energy utilization as far upstream as possible provides the highest chance of generating a broad spectrum of CR-like effects when compared to targeting a singular molecular target downstream. As an initial candidate CRM, 2-deoxyglucose, a known anti-glycolytic, was shown to produce a remarkable phenotype of CR, but further investigation found that this compound produced cardiotoxicity in rats at the doses we had been using. There remains interest in 2DG as a CRM but at lower doses. Beyond the proposal of 2DG as a candidate CRM, the field has grown steadily with many investigators proposing other strategies, including novel anti-glycolytics. Within the realm of upstream targeting at the level of the digestive system, research has included bariatric surgery, inhibitors of fat digestion/absorption, and inhibitors of carbohydrate digestion. Research focused on downstream sites has included insulin receptors, IGF-1 receptors, sirtuin activators, inhibitors of mTOR, and polyamines. In the current review we discuss progress made involving these various strategies and comment on the status and future for each within this exciting research field.
    Ageing Research Reviews 12/2014; DOI:10.1016/j.arr.2014.11.005 · 7.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: We have previously demonstrated that ritonavir targeting of glycolysis is growth inhibitory and cytotoxic in a subset of MM cells. In this study our objective was to investigate the metabolic basis of resistance to ritonavir and to determine the utility of co-treatment with the mitochondrial complex I inhibitor metformin to target compensatory metabolism. Experimental Design: We determined combination indices for ritonavir and metformin, impact on myeloma cell lines, patient samples and myeloma xenograft growth. Additional evaluation in breast, melanoma, and ovarian cancer cell lines was also performed. Signaling connected to suppression of the pro-survival BCL2 family member MCL-1 was evaluated in MM cell lines and tumor lysates. Reliance on oxidative metabolism was determined by evaluation of oxygen consumption and dependence on glutamine was assessed by estimation of viability upon metabolite withdrawal in the context of specific metabolic perturbations. Results: Ritonavir-treated MM cells exhibited increased reliance on glutamine metabolism. Ritonavir sensitized MM cells to metformin, effectively eliciting cytotoxicity both in vitro and in an in vivo xenograft model of MM and in breast, ovarian and melanoma cancer cell lines. Ritonavir and metformin effectively suppressed AKT and mTORC1 phosphorylation and pro-survival BCL-2 family member MCL-1 expression in MM cell lines in vitro and in vivo. Conclusions: FDA-approved ritonavir and metformin effectively target MM cell metabolism to elicit cytotoxicity in MM. Our studies warrant further investigation into repurposing ritonavir and metformin to target the metabolic plasticity of myeloma to more broadly target myeloma heterogeneity and prevent the re-emergence of chemo-resistant aggressive MM. Copyright © 2014, American Association for Cancer Research.
    Clinical Cancer Research 12/2014; DOI:10.1158/1078-0432.CCR-14-1088 · 8.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we investigated the roles of PDCD5 (programmed cell death 5) in multidrug re-sistance (MDR) of osteosarcoma cells and the possible lurking mechanisms. An adenovirus expression vector of PDCD5 was constructed and transfected into human adriamycin-resistant osteosarcoma cell line Saos-2/ADM. We found that up-regulation of PDCD5 could significantly enhance the sensitivity of Saos-2/ADM cells towards vincristine, methotrexate, cisplatin and arsenic trioxide (As2O3), and could decrease the capacity of cells to efflux adriamycin. PDCD5 could significantly down regulate the expression of P-glycoprotein (Pgp), but not affect the expression of multidrug resistance associated protein (MRP) or the glutathione S-transferase (GST). PDCD5 was also able to significantly increase the apoptotic activity of modified osteosarcoma cells. Further study of the biological functions of PDCD5 might be helpful in the understanding of the mechanisms of multidrug resistance (MDR) in osteosarcoma and exploring PDCD5 based adjuvant genetic therapy.
    International Journal of Clinical and Experimental Medicine 01/2014; 7(12):5429-36. · 1.42 Impact Factor

Preview

Download
1 Download