Article

The R-enantiomer of the nonsteroidal antiinflammatory drug etodolac binds retinoid X receptor and induces tumor-selective apoptosis.

The Burnham Institute, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2005; 102(7):2525-30. DOI: 10.1073/pnas.0409721102
Source: PubMed

ABSTRACT Prostate cancer is often slowly progressive, and it can be difficult to treat with conventional cytotoxic drugs. Nonsteroidal antiinflammatory drugs inhibit the development of prostate cancer, but the mechanism of chemoprevention is unknown. Here, we show that the R-enantiomer of the nonsteroidal antiinflammatory drug etodolac inhibited tumor development and metastasis in the transgenic mouse adenocarcinoma of the prostate (TRAMP) model, by selective induction of apoptosis in the tumor cells. This proapoptotic effect was associated with loss of the retinoid X receptor (RXRalpha) protein in the adenocarcinoma cells, but not in normal prostatic epithelium. R-etodolac specifically bound recombinant RXRalpha, inhibited RXRalpha transcriptional activity, and induced its degradation by a ubiquitin and proteasome-dependent pathway. The apoptotic effect of R-etodolac could be controlled by manipulating cellular RXRalpha levels. These results document that pharmacologic antagonism of RXRalpha transactivation is achievable and can have profound inhibitory effects in cancer development.

0 Bookmarks
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of new molecular targets for the treatment of breast cancer is an important clinical goal, especially for triple-negative breast cancer, which is refractory to existing targeted treatments. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, and thus may be a potential anticancer target. To investigate the AhR as an anticancer target, we conducted a small molecule screen to discover novel AhR ligands with anticancer properties. We identified raloxifene, a selective estrogen receptor (ER) modulator currently used in the clinic for prevention of ER-positive breast cancer and osteoporosis in post-menopausal women, as an AhR activator. Raloxifene directly bound the AhR and induced apoptosis in ER-negative mouse and human hepatoma cells in an AhR-dependent manner, indicating that the AhR is a molecular target of raloxifene and mediates raloxifene-induced apoptosis in the absence of ER. Raloxifene selectively induced apoptosis of triple-negative MDA-MB-231 breast cancer cells compared with non-transformed mammary epithelial cells via the AhR. Combined with recent data showing that raloxifene inhibits triple-negative breast cancer xenografts in vivo (Int J Oncol. 43(3):785-92, 2013), our results support the possibility of repurposing of raloxifene as an AhR-targeted therapeutic for triple-negative breast cancer patients. To this end, we also evaluated the role of AhR expression on survival of patients diagnosed with breast cancer. We found that higher expression of the AhR is significantly associated with increased overall survival and distant metastasis-free survival in both hormone-dependent (ER-positive) and hormone-independent (ER and progesterone receptor (PR)-negative) breast cancers. Together, our data strongly support the possibility of using the AhR as a molecular target for the treatment of hormone-independent breast cancers.
    Cell Death & Disease 01/2014; 5:e1038. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer of the prostate is a highly prevalent disease with a heterogeneous aetiology and prognosis. Current understanding of the biological mechanisms underlying the responses of prostate tissue to ionizing radiation exposure, including cancer induction, is surprisingly limited for both high- and low-dose exposures. As population exposure to radiation increases, largely through medical imaging, a better understanding of the response of the prostate to radiation exposure is required. Low-dose radiation-induced adaptive responses for increased cancer latency and decreased cancer frequency have been demonstrated in mouse models, largely for hematological cancers. This study examines the effects of high- and low-dose whole-body radiation exposure on prostate cancer development using an autochthonous mouse model, TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) of prostate cancer. TRAMP mice were exposed to single acute high (2 Gy), low (50 mGy) and repeated low (5 × 50 mGy) doses of X rays to evaluate both the potential prostate cancer promoting effects of high-dose radiation and low-dose adaptive response phenomena in this prostate cancer model. Prostate weights and histopathology were examined to evaluate gross changes in cancer development and, in mice exposed to a single 2 Gy dose, time-to-palpable tumor was examined. Proliferation (Ki-67), apoptosis, DNA damage (γ-H2AX) and transgene expression (large T-antigen) were examined within TRAMP prostate sections. Neither high- nor low-dose radiation-induced effects on prostate cancer progression were observed for any of the endpoints studied. Lack of observable effects of high- or low-dose radiation exposure suggests that modulation of tumorigenesis in the TRAMP model is largely resistant to such exposures. However, further study is required to better assess the effects of radiation exposure using alternative prostate cancer models that incorporate normal prostate and in those that are not driven by SV40 large T antigen.
    Radiation Research 08/2013; · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retinoid X receptor-alpha (RXRα), an intriguing and unique drug target, can serve as an intracellular target mediating the anticancer effects of certain nonsteroidal anti-inflammatory drugs (NSAIDs), including sulindac. We report the synthesis and characterization of two sulindac analogs, K-8008 and K-8012, which exert improved anticancer activities over sulindac in a RXRα-dependent manner. The analogs inhibit the interaction of the N-terminally truncated RXRα (tRXRα) with the p85α subunit of PI3K, leading to suppression of AKT activation and induction of apoptosis. Crystal structures of the RXRα ligand-binding domain (LBD) with K-8008 or K-8012 reveal that both compounds bind to tetrameric RXRα LBD at a site different from the classical ligand-binding pocket. Thus, these results identify K-8008 and K-8012 as tRXRα modulators and define a binding mechanism for regulating the nongenomic action of tRXRα.
    Chemistry & biology 04/2014; · 6.52 Impact Factor

Full-text (2 Sources)

View
10 Downloads
Available from
May 22, 2014