Modelling bioconcentration of pesticides in fish using biopartitioning micellar chromatography.

Departamento de Química Analítica, Universitat de València, C/Vicente Andrés Estellés s/n E-46100, Burjassot, València, Spain.
Journal of Chromatography A (Impact Factor: 4.61). 01/2005; 1063(1-2):153-60. DOI: 10.1016/j.chroma.2004.11.074
Source: PubMed

ABSTRACT Ecotoxicity assessment is essential before placing new chemical substances on the market. An investigation of the use of the chromatographic retention (log k) in biopartitioning micellar chromatography (BMC) as an in vitro approach to evaluate the bioconcentration factor (BCF) of pesticides in fish is proposed. A heterogeneous set of 85 pesticides from six chemical families was used. For pesticides exhibiting bioconcentration in fish (experimental log BCF > 2), a quantitative retention-activity relationships (QRAR) model is able to perform precise log BCF estimations of new pesticides. Considering the present data, the results based on log k seem to be more reliable than those from available software (BCFWIN and KOWWIN) and from log P (quantitative structure-activity relationships (QSAR)). It is also possible to perform risk assessment tasks fixing a threshold value for log k, which substitute two common threshold values, log P and experimental log BCF, avoiding the experimental problems related with these two parameters.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The feasibility of a bioaccumulation test based on the use of zebrafish eleutheroembryos as an alternative to adult-individual-based approaches for REACH application has been evaluated for three test compounds, chlorpyrifos, dicofol and atrazine. Following the OECD 305 guidelines, zebrafish eleutheroembryos (72 h after hatching, hpf) were separately exposed to the investigated pesticides at two nominal concentrations below 1% of its corresponding LC(50). The uptake experiments lasted for 48 h. Then, the exposure medium was replaced by a non-contaminated medium for depuration experiments (up to 72 h). Zebrafish eleutheroembryos (larvae 144 hpf, i.e. at the end of the depuration step) and their corresponding exposure media was sampled at ten different times during each experiment and the concentration of the investigated pesticide determined in both the organisms and in the exposure medium. The experimentally determined pesticide accumulation profiles in the eleutheroembryos demonstrated that atrazine has a very fast accumulation kinetic, reaching steady sate (SS) within 24h. Chlorpyrifos and dicofol did not reach the SS within the 48-h uptake experiments although they exhibit higher accumulations than the former pesticide. Two toxicokinetic models were used to calculate the bioconcentration factor (BCF) of the studied pesticide in zebrafish eleutheroembryos. In the former, the BCF was calculated under SS conditions (BCF(SS)). The second was used when the compounds did not reach the SS during the uptake experiment (BCF(k)). Log BCF values of 3.55 and 3.84 for chlorpyrifos; 0.6 and 1.17 for atrazine, and 3.90 for dicofol were experimentally calculated at selected exposure concentrations. These values have been compared with those reported in related bioaccumulation studies and official databases.
    Science of The Total Environment 03/2012; 425:184-90. · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biopartitioning Micellar Chromatography (BMC) is a mode of micellar liquid chromatography that uses C18 stationary phases and micellar mobile phases of Brij35 under adequate experimental conditions and can be useful to mimic human drug absorption, blood-brain barrier distribution or partitioning processes in biological systems. BMC system can be useful in constructing good predictive models because the characteristics of the BMC system are similar to biological barriers and extracellular fluids. Immobilized Artificial Membrane (IAM) chromatography uses stationary phase which consists of a monolayer of phosphatidylcholine covalently immobilized on an inert silica support. IAM columns are thought to mimic very closely a membrane bilayer and are used in a HPLC system with a physiological buffer as eluent. In this paper the usefulness of BMC and IAM system for in silico and in vitro determination of blood-brain barrier (BBB) penetration of phenols has been demonstrated. The most important pharmacokinetic parameters of brain have been obtained for the determination of BBB penetration, i.e. BBB permeability - surface area product (PS), usually given as a logPS, brain/plasma equilibration rate (log(PS×fu,brain)) and fraction unbound in plasma (Fu). Moreover, the relationships between retention of eighteen phenols and different parameters of molecular size, lipophilicity and BBB penetration were studied. Extrapolated to pure water values of the logarithms of retention factors (logkw) have been compared with the corresponding octanol-water partition coefficient (logPo-w) values of the solutes. In addition, different physicochemical parameters from Foley's equation for BMC system have been collated with the chromatographic data. The Linear Solvation Energy Relationship (LSER) using Abraham model for the describing of phenols penetration across BBB has been used. Four equations were developed as a multiple linear regression using retention data from IAM and BMC system (QRAR models) and molecular volume parameter (Vm) and Abraham descriptors to correlate the logBB values. Moreover, in order to establish the relationships between different variables, the principal components analysis (PCA) has been done. The results of PCA were obtained using chromatographic data from IAM and BMC systems as well as from the structures of tested phenols. The four parameters: logkwIAM(exp), logkwBMC(exp), analyte-micelle association constant (Kma) and logPo-w have been checked.
    Journal of Chromatography A 02/2013; · 4.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Penetrable silica possesses hierarchical pores, mesopores and penetrable macropores, offering fast mass transfer, satisfactory mechanical strength as well as low column pressure. In the present study, penetrable octadecyl-bonded silica (ODS) was for the first time used as biopartitioning micellar chromatography (BMC) stationary phase to profile ecotoxicity and skin permeability of benzophenone UV-filters. Mobile phase (MP) pH and concentration of polyoxyethylene(23)lauryl ether in the MP were systematically studied. Quantitative retention-activity relationships (QRARs) model was established to correlate retention factors (k) on BMC with bioconcentration factor (BCF) and transdermal rate (TR) of UV-filters. Coefficient of determination (r(2)) of the QRARs model between log BCF and logk were 0.9398-0.9753, while r(2) between TR and logk were 0.7569-0.8434, which demonstrated satisfactory predictive ability of the methodology. It was a powerful tool for fast screening by combining penetrable ODS with BMC, and avoiding column blockage often occurring in BMC.
    Analytica chimica acta 12/2013; 804C:321-327. · 4.31 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014