Article

Kinetic and thermodynamic studies on ligand substitution reactions and base-on/base-off equilibria of cyanoimidazolylcobamide, a vitamin B12 analog with an imidazole axial nucleoside.

Institute for Inorganic Chemistry, University of Erlangen-Nurnberg, Egerlandstr.1, 91058, Erlangen, Germany.
Dalton Transactions (Impact Factor: 3.81). 03/2005; DOI: 10.1039/b414092c
Source: PubMed

ABSTRACT Ligand substitution reactions of the vitamin B12 analog cyanoimidazolylcobamide, CN(Im)Cbl, with cyanide were studied. Cyanide substitutes imidazole (Im) in the alpha-position more slowly than it substitutes dimethylbenzimidazole in cyanocobalamin (vitamin B12). The kinetics of the displacement of Im by CN- showed saturation behaviour at high cyanide concentration; the limiting rate constant was found to be 0.0264 s(-1) at 25 degrees C and is characterized by the activation parameters: DeltaH(not =) = 111 +/- 2 kJ mol(-1), DeltaS(not =) = +97 +/- 6 J K(-1) mol(-1), and DeltaV(not =) = +9.3 +/- 0.3 cm3 mol(-1). These parameters are interpreted in terms of an I(d) mechanism. The equilibrium constant for the reaction of CN(Im)Cbl with CN- was found to be 861 +/- 75 M(-1), which is significantly less than that obtained for the reaction of cyanocobalamin with CN- (viz. 10(4) M(-1)). pKbase-off for the base-on/base-off equilibrium was determined spectrophotometrically and found to be 0.99 +/- 0.05, which is about 0.9 pH units higher than that obtained previously in the case of cyanocobalamin. In addition, the kinetics of the base-on/base-off reaction was studied using a pH-jump technique and the data obtained revealed evidence for an acid catalyzed reaction path. The results obtained in this study are discussed in reference to those reported previously for cyanocobalamin.

0 Bookmarks
 · 
47 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of 2 ',3 '-isopropylidene and 5 '-trityl-protected alpha-indole and alpha/beta-benzimidazole and imidazole ribonucleosides were deprotected with different acids. Selectivity was achieved for 5 '-versus 2 ',3 '- deprotection by using formic acid in the alpha-indole ribonucleoside series. Treatment of alpha-indole ribonucleosides with a mixture of formic acid and ether at room temperature afforded 2 ',3 '-deprotected alpha-ribonucleosides, whereas treatment of the alpha-benzimidazole ribonucleosides with the same acid afforded the 5 '-deprotected ribonucleoside without any 2 ', 3 '-deprotected products. The structures of these ribonucleosides were elucidated with 2D (NOESY, COSY, and HMQC) NMR spectroscopy.
    Nucleosides Nucleotides &amp Nucleic Acids 02/2007; 26(1):1-8. · 0.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overproduction of hypochlorous acid (HOCl) has been associated with the development of a variety of disorders such as inflammation, heart disease, pulmonary fibrosis, and cancer through its ability to modify various biomolecules. HOCl is a potent oxidant generated by the myeloperoxidase-hydrogen peroxide-chloride system. Recently, we have provided evidence to support the important link between higher levels of HOCl and heme destruction and free iron release from hemoglobin and RBCs. Our current findings extend this work and show the ability of HOCl to mediate the destruction of metal-ion derivatives of tetrapyrrole macrocyclic rings, such as cyanocobalamin (Cobl), a common pharmacological form of vitamin B12. Cyanocobalamin is a water-soluble vitamin that plays an essential role as an enzyme cofactor and antioxidant, modulating nucleic acid metabolism and gene regulation. It is widely used as a therapeutic agent and supplement, because of its efficacy and stability. In this report, we demonstrate that although Cobl can be an excellent antioxidant, exposure to high levels of HOCl can overcome the beneficial effects of Cobl and generate proinflammatory reaction products. Our rapid kinetic, HPLC, and mass spectrometric analyses showed that HOCl can mediate corrin ring destruction and liberate cyanogen chloride (CNCl) through a mechanism that initially involves α-axial ligand replacement in Cobl to form a chlorinated derivative, hydrolysis, and cleavage of the phosphonucleotide moiety. Additionally, it can liberate free Co, which can perpetuate metal-ion-induced oxidant stress. Taken together, these results are the first report of the generation of toxic molecular products through the interaction of Cobl with HOCl.
    Free Radical Biology and Medicine 11/2011; 52(3):616-25. · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenolyl cobamides are unique members of a class of cobalt-containing cofactors that includes vitamin B(12) (cobalamin). Cobamide cofactors facilitate diverse reactions in prokaryotes and eukaryotes. Phenolyl cobamides are structurally and chemically distinct from the more commonly used benzimidazolyl cobamides such as cobalamin, as the lower axial ligand is a phenolic group rather than a benzimidazole. The functional significance of this difference is not well understood. Here we show that in the bacterium Sporomusa ovata, the only organism known to synthesize phenolyl cobamides, several cobamide-dependent acetogenic metabolisms have a requirement or preference for phenolyl cobamides. The addition of benzimidazoles to S. ovata cultures results in a decrease in growth rate when grown on methanol, 3,4-dimethoxybenzoate, H(2) + CO(2), or betaine. Suppression of native p-cresolyl cobamide synthesis and production of benzimidazolyl cobamides occurs upon the addition of benzimidazoles, indicating that benzimidazolyl cobamides are not functionally equivalent to the phenolyl cobamide cofactors produced by S. ovata. We further show that S. ovata is capable of incorporating other phenolic compounds into cobamides that function in methanol metabolism. These results demonstrate that S. ovata can incorporate a wide range of compounds as cobamide lower ligands, despite its preference for phenolyl cobamides in the metabolism of certain energy substrates. To our knowledge, S. ovata is unique among cobamide-dependent organisms in its preferential utilization of phenolyl cobamides.
    Journal of bacteriology 02/2013; · 3.94 Impact Factor