Platelet activation in cystic fibrosis

Harvard University, Cambridge, Massachusetts, United States
Blood (Impact Factor: 10.43). 07/2005; 105(12):4635-41. DOI: 10.1182/blood-2004-06-2098
Source: PubMed

ABSTRACT Cystic fibrosis (CF) is caused by a mutation of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). We examined platelet function in CF patients because lung inflammation is part of this disease and platelets contribute to inflammation. CF patients had increased circulating leukocyte-platelet aggregates and increased platelet responsiveness to agonists compared with healthy controls. CF plasma caused activation of normal and CF platelets; however, activation was greater in CF platelets. Furthermore, washed CF platelets also showed increased reactivity to agonists. CF platelet hyperreactivity was incompletely inhibited by prostaglandin E(1) (PGE(1)). As demonstrated by Western blotting and reverse-transcriptase-polymerase chain reaction (RT-PCR), there was neither CFTR nor CFTR-specific mRNA in normal platelets. There were abnormalities in the fatty acid composition of membrane fractions of CF platelets. In summary, CF patients have an increase in circulating activated platelets and platelet reactivity, as determined by monocyte-platelet aggregation, neutrophil-platelet aggregation, and platelet surface P-selectin. This increased platelet activation in CF is the result of both a plasma factor(s) and an intrinsic platelet mechanism via cyclic adenosine monophosphate (cAMP)/adenylate cyclase, but not via platelet CFTR. Our findings may account, at least in part, for the beneficial effects of ibuprofen in CF.

Download full-text


Available from: Michael Laposata, Aug 27, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: After vessel wall injury, platelets adhere to the exposed subendothelium, are activated, and release mediators such as thromboxane A (2) (TXA (2)) and nucleotides stored at very high concentration in the so-called dense granules. Among other soluble agents, released nucleotides act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled adenosine diphosphate (ADP) receptors, namely the P2Y (1) and P2Y (12) receptor subtypes; the P2X (1) receptor ligand-gated cation channel is activated by adenosine triphosphate (ATP). The P2Y (1) receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, whereas the P2Y (12) receptor is responsible for completion of the aggregation to ADP. This receptor, the molecular target of the antithrombotic drug clopidogrel, is responsible for most of the potentiating effects of ADP when platelets are stimulated by agents such as thrombin, collagen, or immune complexes. The P2X (1) receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all of the sequential events involved in platelet function and hemostasis. As such, they represent potential targets for antithrombotic drugs.
    Seminars in Thrombosis and Hemostasis 05/2005; 31(2):150-61. DOI:10.1055/s-2005-869520 · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of activated platelets and platelet-leukocyte aggregates in the circulation accompanies major surgical procedures and occurs in several chronic diseases. Recent findings that activated platelets contribute to the inflammatory disease atherosclerosis made us address the question whether activated platelets stimulate normal healthy endothelium. Infusion of activated platelets into young mice led to the formation of transient platelet-leukocyte aggregates and resulted in a several-fold systemic increase in leukocyte rolling 2 to 4 hours after infusion. Rolling returned to baseline levels 7 hours after infusion. Infusion of activated P-selectin-/- platelets did not induce leukocyte rolling, indicating that platelet P-selectin was involved in the endothelial activation. The endothelial activation did not require platelet CD40L. Leukocyte rolling was mediated solely by the interaction of endothelial P-selectin and leukocyte P-selectin glycoprotein ligand 1 (PSGL-1). Endothelial P-selectin is stored with von Willebrand factor (VWF) in Weibel-Palade bodies. The release of Weibel-Palade bodies on infusion of activated platelets was indicated by both elevation of plasma VWF levels and by an increase in the in vivo staining of endothelial P-selectin. We conclude that the presence of activated platelets in circulation promotes acute inflammation by stimulating secretion of Weibel-Palade bodies and P-selectin-mediated leukocyte rolling.
    Blood 11/2005; 106(7):2334-9. DOI:10.1182/blood-2005-04-1530 · 10.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fatty acid ethyl esters (FAEE) are nonoxidative ethanol metabolites shown to produce toxic effects in the liver and pancreas in vivo and in vitro. Because alcohol-induced chronic pancreatitis is associated with mutations in the gene responsible for cystic fibrosis (CFTR), we hypothesized that CFTR dysfunction leads to increased levels of these toxic nonoxidative ethanol metabolites following alcohol administration. Cystic fibrosis (CF) and wild-type (WT) mice were injected intraperitoneally with 1, 2, or 3 g/kg of 50% ethanol. Mice were sacrificed and the liver and pancreas removed for FAEE analysis. The mean FAEE concentration (pmol/g) detected in the liver of cftr mice following injection with 2 g/kg of ethanol was significantly greater than the amount detected in WT (p < 0.005). A similar trend in FAEE concentration was seen in the pancreas, but the difference was not statistically different. In both the liver and pancreas, analysis of individual FAEE species demonstrated a selective increase in ethyl oleate. These data show an association between CFTR dysfunction and qualitative and quantitative changes in FAEE in liver and pancreas upon ethanol exposure.
    Alcoholism Clinical and Experimental Research 12/2005; 29(11):2039-45. DOI:10.1097/01.alc.0000187593.86202.e8 · 3.31 Impact Factor
Show more