Expression of Erythropoietin and erythropoietin receptor in non-small cell lung carcinomas

Service d'Histologie-Biologie Tumorale and Service d'Anatomie Pathologique, Unité Propre de Recherche de l'Enseignement Supérieur EA 3499, Université Paris 6, Hôpital Tenon, 4 rue de la Chine, 75950 Paris cedex 20, France.
Clinical Cancer Research (Impact Factor: 8.72). 03/2005; 11(3):993-9.
Source: PubMed


Expression of erythropoietin (Epo) and its receptor (Epo-R) has been shown in various normal and neoplastic nonhematopoietic tissues. This study, in non-small cell lung carcinoma, was designed to investigate the previously unreported expression of Epo and Epo-R as well as hypoxia-inducible factor-1alpha (HIF-1alpha), which is known to control Epo expression.
Samples from lung squamous cell carcinomas (n = 17) and adenocarcinomas (n = 12) were obtained from patients undergoing curative surgery. mRNA transcripts of Epo, Epo-R, soluble Epo-R (sEpo-R), HIF-1alpha, and factor inhibiting HIF-1 (FIH-1) were evaluated by reverse transcription-PCR, whereas localization of Epo, Epo-R, and HIF-1alpha was assessed by immunohistochemistry.
Epo, Epo-R, sEpo-R, HIF-1alpha, and FIH-1 transcripts were detected by reverse transcription-PCR in all samples tested, but with heterogeneous levels of expression for Epo, Epo-R, and sEpo-R. Coordinated levels of mRNA were observed for HIF-1alpha and FIH-1.Epo was detected in carcinomatous cells by immunohistochemistry in 50% of samples and Epo-R was detected in 96% of samples. Co-expression of Epo and Epo-R was observed on contiguous sections from 50% of tumors. HIF-1alpha was immunolocalized in 80% of non-small cell lung carcinomas.
Epo-R was expressed in almost all samples and Epo was expressed in one half of samples on immunohistochemistry and in 100% of samples by mRNA detection, suggesting a potential paracrine and/or autocrine role of endogenous Epo in non-small cell lung carcinoma. The detection of stabilized HIF-1alpha suggests a possible role in Epo expression. Moreover, in the light of these results, the potential interactions between therapeutic recombinant Epo and the putative neoplastic Epo/Epo-R signaling pathways must be considered.

28 Reads
  • Source
    • "Association between EPOR signaling and disease outcome, including survival, has hitherto been studied in only a small number of NSCLC patients [11,24]. In addition, the only two studies on the prognostic value of EPOR expression in human NSCLC samples [24] were based on tumor immunohistochemistry data generated with anti-EPOR antibodies the specificity of which has been questioned so far [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant human erythropoietins (rHuEPOs) are used to treat cancer-related anemia. Recent preclinical studies and clinical trials, however, have raised concerns about the potential tumor-promoting effects of these drugs. Because the clinical significance of erythropoietin receptor (EPOR) signaling in human non-small cell lung cancer (NSCLC) also remains controversial, our aim was to study whether EPO treatment modifies tumor growth and if EPOR expression has an impact on the clinical behavior of this malignancy. A total of 43 patients with stage III-IV adenocarcinoma (ADC) and complete clinicopathological data were included. EPOR expression in human ADC samples and cell lines was measured by quantitative real-time polymerase chain reaction. Effects of exogenous rHuEPOα were studied on human lung ADC cell lines in vitro. In vivo growth of human ADC xenografts treated with rHuEPOα with or without chemotherapy was also assessed. In vivo tumor and endothelial cell (EC) proliferation was determined by 5-bromo-2'-deoxy-uridine (BrdU) incorporation and immunofluorescent labeling. Although EPOR mRNA was expressed in all of the three investigated ADC cell lines, rHuEPOα treatment (either alone or in combination with gemcitabine) did not alter ADC cell proliferation in vitro. However, rHuEPOα significantly decreased tumor cell proliferation and growth of human H1975 lung ADC xenografts. At the same time, rHuEPOα treatment of H1975 tumors resulted in accelerated tumor endothelial cell proliferation. Moreover, in patients with advanced stage lung ADC, high intratumoral EPOR mRNA levels were associated with significantly increased overall survival. This study reveals high EPOR level as a potential novel positive prognostic marker in human lung ADC.
    PLoS ONE 10/2013; 8(10):e77459. DOI:10.1371/journal.pone.0077459 · 3.23 Impact Factor
  • Source
    • "Meanwhile, Mohyeldin and Lai also attested EPO was a crucial clinical signatures for head and neck squamous cell carcinoma diagnosis [96], [97]. Analogous conclusions could also be obtained in lung cancer [98], prostate cancer [99] and ovarian cancer [100], which indicated EPO/EPOR signaling system was tightly connected with tumor cell apoptosis, hypoxia resistance and metastasis. Furthermore, it had been confirmed that cancerous cell lines with EPO pretreatment rendered them less sensitive to the cytotoxicity of cisplatin [95]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ulcerative colitis (UC) was the most frequently diagnosed inflammatory bowel disease (IBD) and closely linked to colorectal carcinogenesis. By far, the underlying mechanisms associated with the disease are still unclear. With the increasing accumulation of microarray gene expression profiles, it is profitable to gain a systematic perspective based on gene regulatory networks to better elucidate the roles of genes associated with disorders. However, a major challenge for microarray data analysis is the integration of multiple-studies generated by different groups. In this study, firstly, we modeled a signaling regulatory network associated with colorectal cancer (CRC) initiation via integration of cross-study microarray expression data sets using Empirical Bayes (EB) algorithm. Secondly, a manually curated human cancer signaling map was established via comprehensive retrieval of the publicly available repositories. Finally, the co-differently-expressed genes were manually curated to portray the layered signaling regulatory networks. Overall, the remodeled signaling regulatory networks were separated into four major layers including extracellular, membrane, cytoplasm and nucleus, which led to the identification of five core biological processes and four signaling pathways associated with colorectal carcinogenesis. As a result, our biological interpretation highlighted the importance of EGF/EGFR signaling pathway, EPO signaling pathway, T cell signal transduction and members of the BCR signaling pathway, which were responsible for the malignant transition of CRC from the benign UC to the aggressive one. The present study illustrated a standardized normalization approach for cross-study microarray expression data sets. Our model for signaling networks construction was based on the experimentally-supported interaction and microarray co-expression modeling. Pathway-based signaling regulatory networks analysis sketched a directive insight into colorectal carcinogenesis, which was of significant importance to monitor disease progression and improve therapeutic interventions.
    PLoS ONE 06/2013; 8(6):e67142. DOI:10.1371/journal.pone.0067142 · 3.23 Impact Factor
  • Source
    • "Tissue hypoxia caused by inadequate blood supply occurs very early during tumor development, usually when the tumor diameter is just a few millimeters [1]. Therefore, over-expression of hypoxia-inducible transcription factor-1 (HIF-1), a "master" gene in the hypoxic response, is a frequent occurrence in many tumor cells, including NSCLC [2]. However, the role of HIF-1 in NSCLC remains controversial. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-inducible transcription factor-1alpha (HIF-1alpha), which plays an important role in controlling the hypoxia-induced glycolysis pathway, is a "master" gene in the tissue hypoxia response during tumor development. However, its role in the apoptosis of non-small cell lung cancer remains unknown. Here, we have studied the effects of HIF-1alpha on apoptosis by modulating HIF-1alpha gene expression in A549 cells through both siRNA knock-down and over-expression. A549 cells were transfected with a HIF-1alpha siRNA plasmid or a HIF-1alpha expression vector. Transfected cells were exposed to a normoxic or hypoxic environment in the presence or absence of 25 mM HEPES and 2-deoxyglucose (2-DG) (5 mM). The expression of three key genes of the glycolysis pathway, glucose transporter type 1(GLUT1), phosphoglycerate kinase 1(PGK1), and hexokinase 1(HK1), were measured using real-time RT-PCR. Glycolysis was monitored by measuring changes of pH and lactate concentration in the culture medium. Apoptosis was detected by TUNEL assay and flow cytometry. Knocking down expression of HIF-1alpha inhibited the glycolysis pathway, increased the pH of the culture medium, and protected the cells from hypoxia-induced apoptosis. In contrast, over-expression of HIF-1alpha accelerated glycolysis in A549 cells, decreased the pH of the culture medium, and enhanced hypoxia-induced apoptosis. These effects of HIF-1alpha on glycolysis, pH of the medium, and apoptosis were reversed by treatment with the glycolytic inhibitor, 2-DG. Apoptosis induced by HIF-1alpha over-expression was partially inhibited by increasing the buffering capacity of the culture medium by adding HEPES. During hypoxia in A549 cells, HIF-1alpha promotes activity of the glycolysis pathway and decreases the pH of the culture medium, resulting in increased cellular apoptosis.
    BMC Cancer 02/2006; 6(1):26. DOI:10.1186/1471-2407-6-26 · 3.36 Impact Factor
Show more