Article

Depression in Parkinson's disease: loss of dopamine and noradrenaline innervation in the limbic system.

CNRS-CEA URA2210, Service Hospitalier Frédéric Joliot, CHU Henri Mondor et Faculté de Médecine Paris 12, France.
Brain (Impact Factor: 10.23). 07/2005; 128(Pt 6):1314-22. DOI: 10.1093/brain/awh445
Source: PubMed

ABSTRACT The reason for the high frequency of depression and anxiety in Parkinson's disease is poorly understood. Degeneration of neurotransmitter systems other than dopamine might play a specific role in the occurrence of these affective disorders. We used [11C]RTI-32 PET, an in vivo marker of both dopamine and noradrenaline transporter binding, to localize differences between depressed and non-depressed patients. We studied eight and 12 Parkinson's disease patients with and without a history of depression matched for age, disease duration and doses of antiparkinsonian medication. The depressed Parkinson's disease cohort had lower [11C]RTI-32 binding than non-depressed Parkinson's disease cases in the locus coeruleus and in several regions of the limbic system including the anterior cingulate cortex, the thalamus, the amygdala and the ventral striatum. Exploratory analyses revealed that the severity of anxiety in the Parkinson's disease patients was inversely correlated with the [11C]RTI-32 binding in most of these regions and apathy was inversely correlated with [11C]RTI-32 binding in the ventral striatum. These results suggest that depression and anxiety in Parkinson's disease might be associated with a specific loss of dopamine and noradrenaline innervation in the limbic system.

0 Followers
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Normal maintenance of human motivation depends on the integrity of subcortical structures that link the prefrontal cortex with the limbic system. Structural and functional disruption of different networks within these circuits alters the maintenance of spontaneous mental activity and the capacity of affected individuals to associate emotions with complex stimuli. The clinical manifestations of these changes include a continuum of abnormalities in goal-oriented behaviours known as apathy. Apathy is highly prevalent in Parkinson's disease (and across many neurodegenerative disorders) and can severely affect the quality of life of both patients and caregivers. Differentiation of apathy from depression, and discrimination of its cognitive, emotional, and auto-activation components could guide an individualised approach to the treatment of symptoms. The opportunity to manipulate dopaminergic treatment in Parkinson's disease allows researchers to study a continuous range of motivational states, from apathy to impulse control disorders. Parkinson's disease can thus be viewed as a model that provides insight into the neural substrates of apathy. Copyright © 2015 Elsevier Ltd. All rights reserved.
    The Lancet Neurology 05/2015; 14(5):518-531. DOI:10.1016/S1474-4422(15)00019-8 · 21.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
    Parkinson's Disease 01/2015; 2015:609428. DOI:10.1155/2015/609428 · 2.10 Impact Factor
  • Source
    Behavioural neurology 01/2013; 27(4):515-522. DOI:10.1155/2013/781029 · 1.64 Impact Factor

Full-text (2 Sources)

Download
157 Downloads
Available from
May 19, 2014