Cervical spinal cord injury upregulates ventral spinal 5-HT2A receptors.

Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA.
Journal of Neurotrauma (Impact Factor: 3.97). 02/2005; 22(2):203-13. DOI: 10.1089/neu.2005.22.203
Source: PubMed

ABSTRACT Following chronic C2 spinal hemisection (C2HS), crossed spinal pathways to phrenic motoneurons exhibit a slow, spontaneous increase in efficacy by a serotonin (5-HT)-dependent mechanism associated with 5-HT2A receptor activation. Further, the spontaneous appearance of cross-phrenic activity following C2HS is accelerated and enhanced by exposure to chronic intermittent hypoxia (CIH). We hypothesized that chronic C2HS would increase 5-HT and 5-HT2A receptor expression in ventral cervical spinal segments containing phrenic motoneurons. In addition, we hypothesized that CIH exposure would further increase 5-HT and 5-HT2A receptor density in this region. Control, sham-operated, and C2HS Sprague-Dawley rats were studied following normoxia or CIH (11% O2-air; 5-min intervals; nights 7-14 post-surgery). At 2 weeks post-surgery, ventral spinal gray matter extending from C4 and C5 was isolated ipsilateral and contralateral to C2HS. Neither C2HS nor CIH altered 5-HT concentration measured with an ELISA on either side of the spinal cord. However, 5-HT2A receptor expression assessed with immunoblots increased in ipsilateral gray matter following C2HS, an effect independent of CIH. Immunocytochemistry revealed increased 5-HT2A receptor expression on identified phrenic motoneurons (p<0.05), as well as in the surrounding gray matter. Contralateral to injury, 5-HT2A receptor expression was elevated in CIH, but not normoxic C2HS rats (p<0.05). Our data are consistent with the hypothesis that spontaneous increase in 5-HT2A receptor expression on or near phrenic motoneurons contributes to strengthened crossed-spinal synaptic pathways to phrenic motoneurons following C2HS.


Available from: David D Fuller, May 28, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of 5-HT transporters as well as the elevated expression, super-sensitivity and/or constitutive auto-activation of specific 5-HT receptors. These changes in the serotonergic system can produce varying degrees of locomotor dysfunction through to paralysis. To date, various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI. These strategies have included pharmacological modulation of serotonergic receptors, through the administration of specific 5-HT receptor agonists, or by elevating the 5-HT precursor 5-hydroxytryptophan, which produces a global activation of all classes of 5-HT receptors. Stimulation of these receptors leads to the activation of the locomotor central pattern generator (CPG) below the site of injury to facilitate or improve the quality and frequency of movements, particularly when used in concert with the activation of other monoaminergic systems or coupled with electrical stimulation. Another approach has been to employ cell therapeutics to replace the loss of descending serotonergic input to the CPG, either through transplanted fetal brainstem 5-HT neurons at the site of injury that can supply 5-HT to below the level of the lesion or by other cell types to provide a substrate at the injury site for encouraging serotonergic axon regrowth across the lesion to the caudal spinal cord for restoring locomotion.
    Frontiers in Neural Circuits 02/2015; 8. DOI:10.3389/fncir.2014.00151 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major cause of mortality after spinal cord injury is respiratory failure. In normal rats, acute intermittent hypoxia (AIH) induces respiratory motor plasticity, expressed as diaphragm (Dia) and second external intercostal (T2 EIC) long-term facilitation (LTF). Dia (not T2 EIC) LTF is enhanced by systemic adenosine 2A (A2A) receptor inhibition in normal rats. We investigated the respective contributions of Dia and T2 EIC to daily AIH-induced functional recovery of breathing capacity with/without A2A receptor antagonist (KW6002, i.p.) following C2 hemisection (C2HS). Rats received daily AIH (dAIH: 10, 5-min episodes, 10.5% O2; 5-min normoxic intervals; 7 successive days beginning 7days post-C2HS) or daily normoxia (dNx) with/without KW6002, followed by weekly (reminder) presentations for 8weeks. Ventilation and EMGs from bilateral diaphragm and T2 EIC muscles were measured with room air breathing (21% O2) and maximum chemoreceptor stimulation (MCS: 7% CO2, 10.5% O2). dAIH increased tidal volume (VT) in C2HS rats breathing room air (dAIH+vehicle: 0.47±0.02, dNx+vehicle: 0.40±0.01ml/100g; p<0.05) and MCS (dAIH+vehicle: 0.83±0.01, dNx+vehicle: 0.73±0.01ml/100g; p<0.001); KW6002 had no significant effect. dAIH enhanced contralateral (uninjured) diaphragm EMG activity, an effect attenuated by KW6002, during room air breathing and MCS (p<0.05). Although dAIH enhanced contralateral T2 EIC EMG activity during room air breathing, KW6002 had no effect. dAIH had no statistically significant effects on diaphragm or T2 EIC EMG activity ipsilateral to injury. Thus, two weeks post-C2HS: 1) dAIH enhances breathing capacity by effects on contralateral diaphragm and T2 EIC activity; and 2) dAIH-induced recovery is A2A dependent in diaphragm, but not T2 EIC. Daily AIH may be a useful in promoting functional recovery of breathing capacity after cervical spinal injury, but A2A receptor antagonists (e.g. caffeine) may undermine its effectiveness shortly after injury. Copyright © 2015. Published by Elsevier Inc.
    Experimental Neurology 02/2015; 266. DOI:10.1016/j.expneurol.2015.02.007 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intermittent hypoxia has generally been perceived as a high risk stimulus, particularly in the field of sleep medicine, because it is thought to initiate detrimental cardiovascular, cognitive and metabolic outcomes. In contrast, the link between intermittent hypoxia and beneficial outcomes has received less attention, perhaps because it is not universally understood that outcome measures following exposure to intermittent hypoxia may be linked to the administered dose. The present review is designed to emphasize the less recognized beneficial outcomes associated with intermittent hypoxia. The review will consider the role intermittent hypoxia has in cardiovascular and autonomic adaptations, respiratory motor plasticity and cognitive function. Each section will highlight the literature that contributed to the belief that intermittent hypoxia leads primarily to detrimental outcomes. The second segment of each section will consider the possible risks associated with experimentally rather than naturally induced intermittent hypoxia. Lastly, the body of literature indicating that intermittent hypoxia initiates primarily beneficial outcomes will be considered. The overarching theme of the review is that the use of intermittent hypoxia in research investigations, coupled with reasonable safeguards, should be encouraged because of the potential benefits linked to the administration of a variety of low risk intermittent hypoxia protocols. Copyright © 2014, Journal of Applied Physiology.
    Journal of Applied Physiology 12/2014; 118(5):jap.00564.2014. DOI:10.1152/japplphysiol.00564.2014 · 3.43 Impact Factor