Cervical spinal cord injury upregulates ventral spinal 5-HT2A receptors.

Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA.
Journal of Neurotrauma (Impact Factor: 3.97). 02/2005; 22(2):203-13. DOI: 10.1089/neu.2005.22.203
Source: PubMed

ABSTRACT Following chronic C2 spinal hemisection (C2HS), crossed spinal pathways to phrenic motoneurons exhibit a slow, spontaneous increase in efficacy by a serotonin (5-HT)-dependent mechanism associated with 5-HT2A receptor activation. Further, the spontaneous appearance of cross-phrenic activity following C2HS is accelerated and enhanced by exposure to chronic intermittent hypoxia (CIH). We hypothesized that chronic C2HS would increase 5-HT and 5-HT2A receptor expression in ventral cervical spinal segments containing phrenic motoneurons. In addition, we hypothesized that CIH exposure would further increase 5-HT and 5-HT2A receptor density in this region. Control, sham-operated, and C2HS Sprague-Dawley rats were studied following normoxia or CIH (11% O2-air; 5-min intervals; nights 7-14 post-surgery). At 2 weeks post-surgery, ventral spinal gray matter extending from C4 and C5 was isolated ipsilateral and contralateral to C2HS. Neither C2HS nor CIH altered 5-HT concentration measured with an ELISA on either side of the spinal cord. However, 5-HT2A receptor expression assessed with immunoblots increased in ipsilateral gray matter following C2HS, an effect independent of CIH. Immunocytochemistry revealed increased 5-HT2A receptor expression on identified phrenic motoneurons (p<0.05), as well as in the surrounding gray matter. Contralateral to injury, 5-HT2A receptor expression was elevated in CIH, but not normoxic C2HS rats (p<0.05). Our data are consistent with the hypothesis that spontaneous increase in 5-HT2A receptor expression on or near phrenic motoneurons contributes to strengthened crossed-spinal synaptic pathways to phrenic motoneurons following C2HS.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cervical spinal cord injury (SCI) dramatically disrupts synaptic inputs and triggers biochemical, as well as morphological, plasticity in relation to the phrenic motor neuron (PhMN) pool. Accordingly, our primary purpose was to determine if chronic SCI induces fundamental changes in the recruitment profile and discharge patterns of PhMNs. Individual PhMN action potentials were recorded from the phrenic nerve ipsilateral to lateral cervical (C2) hemisection injury (C2Hx) in anesthetized adult male rats at 2, 4 or 8wks post-injury and in uninjured controls. PhMNs were phenotypically classified as early (Early-I) or late inspiratory (Late-I), or silent according to discharge patterns. Following C2Hx, the distribution of PhMNs was dominated by Late-I and silent cells. Late-I burst parameters (e.g., spikes per breath, burst frequency and duration) were initially reduced but returned towards control values by 8wks post-injury. In addition, a unique PhMN burst pattern emerged after C2Hx in which Early-I cells burst tonically during hypocapnic inspiratory apnea. We also quantified the impact of gradual reductions in end-tidal CO2 partial pressure (PETCO2) on bilateral phrenic nerve activity. Compared to control rats, as PETCO2 declined, the C2Hx animals had greater inspiratory frequencies (breaths∗min(-1)) and more substantial decreases in ipsilateral phrenic burst amplitude. We conclude that the primary physiological impact of C2Hx on ipsilateral PhMN burst patterns is a persistent delay in burst onset, transient reductions in burst frequency, and the emergence of tonic burst patterns. The inspiratory frequency data suggest that plasticity in brainstem networks is likely to play an important role in phrenic motor output after cervical SCI.
    Experimental Neurology 08/2013; · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The maintenance of blood gas and pH homeostasis is essential to life. As such breathing, and the mechanisms which control ventilation, must be tightly regulated yet highly plastic and dynamic. However, injury to the spinal cord prevents the medullary areas which control respiration from connecting to respiratory effectors and feedback mechanisms below the level of the lesion. This trauma typically leads to severe and permanent functional deficits in the respiratory motor system. However, endogenous mechanisms of plasticity occur following spinal cord injury to facilitate respiration and help recover pulmonary ventilation. These mechanisms include the activation of spared or latent pathways, endogenous sprouting or synaptogenesis, and the possible formation of new respiratory control centres. Acting in combination, these processes provide a means to facilitate respiratory support following spinal cord trauma. However, they are by no means sufficient to return pulmonary function to pre-injury levels. A major challenge in the study of spinal cord injury is to understand and enhance the systems of endogenous plasticity which arise to facilitate respiration to mediate effective treatments for pulmonary dysfunction.
    Respiratory Physiology & Neurobiology 09/2014; · 1.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: After spinal cord injury (SCI) in mammals, the loss of serotonin coming from the brainstem reduces the excitability of motor neurons and leads to a compensatory overexpression of serotonin receptors. Despite the key role of the serotonin receptor 1a in the control of locomotion, little attention has been put in the study of this receptor after SCI. In contrast to mammals, lampreys recover locomotion after a complete SCI, so, studies in this specie could help to understand events that lead to recovery of function. Here, we showed that in lampreys there is an acute increase in the expression of the serotonin 1A receptor transcript (5-ht1a) after SCI and a few weeks later expression levels go back to normal rostrally and caudally to the lesion. Overexpression of the 5-ht1a in rostral levels after SCI has not been reported in mammals, suggesting that this could be part of the plastic events that lead to the recovery of function in lampreys. The analysis of changes in 5-ht1a expression by zones (periventricular region and horizontally extended grey matter) showed that they followed the same pattern of changes detected in the spinal cord as a whole, with the exception of the caudal periventricular layer, where no significant differences were observed between control and experimental animals at any time post lesion. This suggests that different molecular signals act on the periventricular cells of the rostral and caudal regions to injury site and thus affecting their response to the injury in terms of expression of the 5-ht1a.
    Neuropharmacology 02/2014; 77:369-378. · 4.82 Impact Factor

Full-text (2 Sources)

Available from
May 26, 2014