Article

Association of active gamma-secretase complex with lipid rafts

Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.
The Journal of Lipid Research (Impact Factor: 4.73). 06/2005; 46(5):904-12. DOI: 10.1194/jlr.M400333-JLR200
Source: PubMed

ABSTRACT Cholesterol has been implicated in the pathogenesis of Alzheimer's disease (AD). Although the underlying mechanisms are not yet clear, several studies have provided evidence for the involvement of cholesterol-rich lipid rafts in the production of amyloid beta peptide (Abeta), the major component of amyloid deposits in AD. In this regard, the gamma-secretase complex is responsible for the final cleavage event in the processing of beta-amyloid precursor protein (betaAPP), resulting in Abeta generation. The gamma-secretase complex is a multiprotein complex composed of presenilin, nicastrin (NCT), APH-1, and PEN-2. Recent reports have suggested that gamma-secretase activity is predominantly localized in lipid rafts, and presenilin and NCT have been reported to be localized in lipid rafts. In this study, various biochemical methods, including coimmunoprecipitation, in vitro gamma-secretase assay, and methyl-beta-cyclodextrin (MbetaCD) treatment, are employed to demonstrate that all four components of the active endogenous gamma-secretase complex, including APH-1 and PEN-2, are associated with lipid rafts in human neuroblastoma cells (SH-SY5Y). Treatment with statins, 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitors, significantly decreased the association of the gamma-secretase complex with lipid rafts without affecting the distribution of flotillin-1. This effect was partially abrogated by the addition of geranylgeraniol. These results suggest that both cholesterol and protein isoprenylation influence the active gamma-secretase complex association with lipid rafts.

1 Follower
 · 
198 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: C99 is the C-terminal membrane-bound fragment of the amyloid precursor protein that is cleaved by γ-secretase to release Aβ peptides, the hallmark of Alzheimer’s disease (AD). Specific interactions of C99 with cholesterol have been proposed to underlie the recognized role of cholesterol in promoting amyloidogenesis. By using molecular dynamics simulations, we studied cholesterol binding to C99 in a lipid bilayer. We determined the free-energy profile of binding and analyzed the structure of C99/cholesterol complexes in two low-energy binding modes. We also examined the complexation driving forces and found, unexpectedly, that the interactions between the GxxxG dimerization motif and the cholesterol ring system are not sufficient for binding and that further stabilization mediated by the C99 N-terminal domain is essential. Taken together, our results strongly support the view that C99 specifically binds cholesterol in the cell membrane; the detailed information on the structure and energetics of the complex may assist in the design of new anti-AD drugs.
    Journal of Physical Chemistry Letters 02/2015; 5(5):784–790. DOI:10.1021/acs.jpclett.5b00197 · 6.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: γ-Secretase cleaves amyloid β-precursor protein (APP) to generate amyloid-β peptide (Aβ), which is a causative molecule of Alzheimer disease (AD). The C-terminal length of Aβ, which is determined by γ-secretase activity, determines the aggregation and deposition profiles of Aβ, thereby affecting the onset of AD. In this study, we found that the synthetic ceramide analogues DL-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and (1S,2R-D-erythro-2-N-myristoylamino)-1-phenyl-1-propanol (DMAPP) modulated γ-secretase-mediated cleavage to increase Aβ42 production. Unexpectedly, PDMP and DMAPP upregulated Aβ42 production independent of alteration of ceramide metabolism. Our results propose that synthetic ceramide analogues function as novel γ-secretase modulators that increase Aβ42, and this finding might lead to the understanding of the effect of the lipid environment on γ-secretase activity. Copyright © 2014. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 12/2014; 457(2). DOI:10.1016/j.bbrc.2014.12.087 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins' effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins' effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins' possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.
    International Journal of Molecular Sciences 11/2014; 15(11):20607-20637. DOI:10.3390/ijms151120607 · 2.46 Impact Factor