Article

Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein.

Department of Biochemical Sciences, University of Rome, 00185 Rome, Italy.
The Plant Cell (Impact Factor: 9.58). 04/2005; 17(3):849-58. DOI: 10.1105/tpc.104.028886
Source: PubMed

ABSTRACT Pectin, one of the main components of the plant cell wall, is secreted in a highly methyl-esterified form and subsequently deesterified in muro by pectin methylesterases (PMEs). In many developmental processes, PMEs are regulated by either differential expression or posttranslational control by protein inhibitors (PMEIs). PMEIs are typically active against plant PMEs and ineffective against microbial enzymes. Here, we describe the three-dimensional structure of the complex between the most abundant PME isoform from tomato fruit (Lycopersicon esculentum) and PMEI from kiwi (Actinidia deliciosa) at 1.9-A resolution. The enzyme folds into a right-handed parallel beta-helical structure typical of pectic enzymes. The inhibitor is almost all helical, with four long alpha-helices aligned in an antiparallel manner in a classical up-and-down four-helical bundle. The two proteins form a stoichiometric 1:1 complex in which the inhibitor covers the shallow cleft of the enzyme where the putative active site is located. The four-helix bundle of the inhibitor packs roughly perpendicular to the main axis of the parallel beta-helix of PME, and three helices of the bundle interact with the enzyme. The interaction interface displays a polar character, typical of nonobligate complexes formed by soluble proteins. The structure of the complex gives an insight into the specificity of the inhibitor toward plant PMEs and the mechanism of regulation of these enzymes.

0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Detection of induced mutations is valuable for inferring gene function and for developing novel germplasm for crop improvement. Many reverse genetics approaches have been developed to identify mutations in genes of interest within a mutagenized population, including some approaches that rely on next-generation sequencing (e.g. exome capture, whole genome resequencing). As an alternative to these genome or exome-scale methods, we sought to develop a scalable and efficient method for detection of induced mutations that could be applied to a small number of target genes, using Ion Torrent technology. We developed this method in flax (Linum usitatissimum), to demonstrate its utility in a crop species. We used an amplicon-based approach in which DNA samples from an ethyl methanesulfonate (EMS)-mutagenized population were pooled and used as template in PCR reactions to amplify a region of each gene of interest. Barcodes were incorporated during PCR, and the pooled amplicons were sequenced using an Ion Torrent PGM. A pilot experiment with known SNPs showed that they could be detected at a frequency > 0.3% within the pools. We then selected eight genes for which we wanted to discover novel mutations, and applied our approach to screen 768 individuals from the EMS population, using either the Ion 314 or Ion 316 chips. Out of 29 potential mutations identified after processing the NGS reads, 16 mutations were confirmed using Sanger sequencing. The methodology presented here demonstrates the utility of Ion Torrent technology in detecting mutation variants in specific genome regions for large populations of a species such as flax. The methodology could be scaled-up to test >100 genes using the higher capacity chips now available from Ion Torrent.
    Plant Methods 03/2015; 11:19. DOI:10.1186/s13007-015-0062-x · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract After replication in the cytoplasm, viruses spread from the infected cell into the neighboring cells through plasmodesmata, membranous channels embedded by the cell wall. As obligate parasites, viruses have acquired the ability to utilize host factors that unwillingly cooperate for the viral infection process. For example, the viral movement proteins (MP) interacts with the host pectin methylesterase (PME) and both proteins cooperate to sustain the viral spread. However, how and where PMEs interact with MPs and how the PME/MP complexes favor the viral translocation is not well understood. Recently, we demonstrated that the overexpression of PME inhibitors (PMEIs) in tobacco and Arabidopsis plants limits the movement of Tobacco mosaic virus and Turnip vein clearing virus and reduces plant susceptibility to these viruses. Here we discuss how overexpression of PMEI may reduce tobamovirus spreading.
    Plant signaling & behavior 10/2014; DOI:10.4161/15592316.2014.972863
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared to adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits which serve as critical energy and carbon reserves as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells while many flavonoid- and triterpenoid-related metabolite and transcript levels were dramatically increased. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected towards elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4'-dihydroxyflavone (DHF) were further increased in border cells of roots exposed to Phymatotrichopsis omnivora, and the value of DHF as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense and interactions than previously envisioned. Copyright © 2015, American Society of Plant Biologists.
    Plant physiology 02/2015; DOI:10.1104/pp.114.253054 · 7.39 Impact Factor

Full-text (2 Sources)

Download
19 Downloads
Available from
Jun 2, 2014