Article

No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA.

Department of Biology, Brock University, St. Catharines, ON, Canada L2S 3A1.
Free Radical Biology and Medicine (Impact Factor: 5.71). 04/2005; 38(6):737-45. DOI: 10.1016/j.freeradbiomed.2004.12.003
Source: PubMed

ABSTRACT Accumulation of high levels of mutagenic oxidative mitochondrial DNA (mtDNA) lesions like 8-oxodeoxyguanine (8-oxodG) is thought to be involved in the development of mitochondrial dysfunction in aging and in disorders associated with aging. Mice null for oxoguanine DNA glycosylase (OGG1) are deficient in 8-oxodG removal and accumulate 8-oxodG in mtDNA to levels 20-fold higher than in wild-type mice (N.C. Souza-Pinto et al., 2001, Cancer Res. 61, 5378-5381). We have used these animals to investigate the effects on mitochondrial function of accumulating this particular oxidative base modification. Despite the presence of high levels of 8-oxodG, mitochondria isolated from livers and hearts of Ogg1-/- mice were functionally normal. No differences were detected in maximal (chemically uncoupled) respiration rates, ADP phosphorylating respiration rates, or nonphosphorylating rates with glutamate/malate or with succinate/rotenone. Similarly, maximal activities of respiratory complexes I and IV from liver and heart were not different between wild-type and Ogg1-/- mice. In addition, there was no indication of increased oxidative stress in mitochondria from Ogg1-/- mice, as measured by mitochondrial protein carbonyl content. We conclude, therefore, that highly elevated levels of 8-oxodG in mtDNA do not cause mitochondrial respiratory dysfunction in mice.

0 Bookmarks
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ischemia-reperfusion (IR) injury of the heart generates reactive oxygen species that oxidize macromolecules including mitochondrial DNA (mtDNA). The 8-oxoguanine DNA glycosylase (OGG1) works synergistically with MutY DNA glycosylase (MYH) to maintain mtDNA integrity. Our objective was to study the functional outcome of lacking the repair enzymes OGG1 and MYH after myocardial IR and we hypothesized that OGG1 and MYH are important enzymes to preserve mtDNA and heart function after IR. Ex vivo global ischemia for 30min followed by 10min of reperfusion induced mtDNA damage that was removed within 60min of reperfusion in wild-type mice. After 60min of reperfusion the ogg1(-/-) mice demonstrated increased mtDNA copy number and decreased mtDNA damage removal suggesting that OGG1 is responsible for removal of IR-induced mtDNA damage and copy number regulation. mtDNA damage was not detected in the ogg1(-/-)/myh(-/-), inferring that adenine opposite 8-oxoguanine is an abundant mtDNA lesion upon IR. The level and integrity of mtDNA were restored in all genotypes after 35min of regional ischemia and six week reperfusion with no change in cardiac function. No consistent upregulation of other mitochondrial base excision repair enzymes in any of our knockout models was found. Thus repair of mtDNA oxidative base lesions may not be important for maintenance of cardiac function during IR injury in vivo. This article is part of a Special Issue entitled 'Mitochondria'. Copyright © 2014. Published by Elsevier Ltd.
    Journal of Molecular and Cellular Cardiology 11/2014; 78. DOI:10.1016/j.yjmcc.2014.11.010 · 5.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main objective of this review is to provide an appraisal of the current status of the relationship between energy intake and the life span of animals. The concept that a reduction in food intake, or caloric restriction (CR), retards the aging process, delays the age-associated decline in physiological fitness, and extends the life span of organisms of diverse phylogenetic groups is one of the leading paradigms in gerontology. However, emerging evidence disputes some of the primary tenets of this conception. One disparity is that the CR-related increase in longevity is not universal and may not even be shared among different strains of the same species. A further misgiving is that the control animals, fed ad libitum (AL), become overweight and prone to early onset of diseases and death, and thus may not be the ideal control animals for studies concerned with comparisons of longevity. Reexamination of body weight and longevity data from a study involving over 60,000 mice and rats, conducted by a National Institute on Aging-sponsored project, suggests that CR-related increase in life span of specific genotypes is directly related to the gain in body weight under the AL feeding regimen. Additionally, CR in mammals and "dietary restriction" in organisms such as Drosophila are dissimilar phenomena, albeit they are often presented to be the very same. The latter involves a reduction in yeast rather than caloric intake, which is inconsistent with the notion of a common, conserved mechanism of CR action in different species. Although specific mechanisms by which CR affects longevity are not well understood, existing evidence supports the view that CR increases the life span of those particular genotypes that develop energy imbalance owing to AL feeding. In such groups, CR lowers body temperature, rate of metabolism, and oxidant production and retards the age-related pro-oxidizing shift in the redox state.
    Free Radical Biology and Medicine 06/2014; 73. DOI:10.1016/j.freeradbiomed.2014.05.015 · 5.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.
    Biogerontology 07/2014; 15(5). DOI:10.1007/s10522-014-9515-2 · 3.01 Impact Factor

Full-text (2 Sources)

Download
49 Downloads
Available from
May 17, 2014