Article

Spatio-temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells.

Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA.
Journal of Cellular Biochemistry (Impact Factor: 3.06). 06/2005; 95(1):74-82. DOI: 10.1002/jcb.20395
Source: PubMed

ABSTRACT The extent to which chromosomal domains are reorganized within the nucleus during differentiation is central to our understanding of how cells become committed to specific developmental lineages. Spatio-temporal patterns of DNA replication are a reflection of this organization. Here, we demonstrate that the temporal order and relative duration of these replication patterns during S-phase are similar in murine pluripotent embryonic stem (ES) cells, primary adult myoblasts, and an immortalized fibroblast line. The observed patterns were independent of fixation and denaturation techniques. Importantly, the same patterns were detected when fluorescent nucleotides were introduced into living cells, demonstrating their physiological relevance. These data suggest that heritable gene silencing during commitment to specific cell lineages is not mediated by global changes in the sub-nuclear organization and replication timing of chromosome domains.

0 Bookmarks
 · 
72 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA cytosine methylation (5mC) is indispensable for a number of cellular processes, including retrotransposon silencing, genomic imprinting, and X chromosome inactivation in mammalian development. Recent studies have focused on 5-hydroxymethylcytosine (5hmC), a new epigenetic mark or intermediate in the DNA demethylation pathway. However, 5hmC itself has no role in pluripotency maintenance in mouse embryonic stem cells (ESCs) lacking Dnmt1, 3a, and 3b. Here, we demonstrated that 5hmC accumulated on euchromatic chromosomal bands that were marked with di- and tri-methylated histone H3 at lysine 4 (H3K4me2/3) in mouse ESCs. By contrast, heterochromatin enriched with H3K9me3, including mouse chromosomal G-bands, pericentric repeats, human satellite 2 and 3, and inactive X chromosomes, was not enriched with 5hmC. Therefore, enzymes that hydroxylate the methyl group of 5mC belonging to the Tet family might be excluded from inactive chromatin, which may restrict 5mC to 5hmC conversion in euchromatin to prevent nonselective de novo DNA methylation.
    Chromosome Research 10/2012; · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The alteration in the location of the chromosomes within the nucleus upon action of internal or external stimuli has been implicated in altering genome function. The effect of stimuli at a whole genome level is studied by using two-dimensional fluorescence in situ hybridization (FISH) to delineate whole chromosome territories within a cell nucleus, followed by a quantitative analysis of the spatial distribution of the chromosome. However, to the best of our knowledge, open access software capable of quantifying spatial distribution of whole chromosomes within cell nucleus is not available. In the current work, we present a software package that computes localization of whole chromosomes - Image Analysis of Chromosomes for computing localization (IMACULAT). We partition the nucleus into concentric elliptical compartments of equal area and the variance in the quantity of any chromosome in these shells is used to determine its localization in the nucleus. The images are pre-processed to remove the smudges outside the cell boundary. Automation allows high throughput analysis for deriving statistics. Proliferating normal human dermal fibroblasts were subjected to standard a two-dimensional FISH to delineate territories for all human chromosomes. Approximately 100 images from each chromosome were analyzed using IMACULAT. The analysis corroborated that these chromosome territories have non-random gene density based organization within the interphase nuclei of human fibroblasts. The ImageMagick Perl API has been used for pre-processing the images. The source code is made available at www.sanchak.com/imaculat.html.
    PLoS ONE 01/2013; 8(4):e61386. · 3.53 Impact Factor
  • Source

Full-text (2 Sources)

Download
37 Downloads
Available from
May 31, 2014