EIF2B5 mutations compromise GFAP(+) astrocyte generation in vanishing white matter leukodystrophy

Department of Biomedical Genetics, Aab Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, USA.
Nature Medicine (Impact Factor: 27.36). 04/2005; 11(3):277-83. DOI: 10.1038/nm1195
Source: PubMed


Vanishing white matter disease (VWM) is a heritable leukodystrophy linked to mutations in translation initiation factor 2B (eIF2B). Although the clinical course of this disease has been relatively well described, the cellular consequences of EIF2B mutations on neural cells are unknown. Here we have established cell cultures from the brain of an individual with VWM carrying mutations in subunit 5 of eIF2B (encoded by EIF2B5). Despite the extensive demyelination apparent in this VWM patient, normal-appearing oligodendrocytes were readily generated in vitro. In contrast, few GFAP-expressing (GFAP+) astrocytes were present in primary cultures, induction of astrocytes was severely compromised, and the few astrocytes generated showed abnormal morphologies and antigenic phenotypes. Lesions in vivo also lacked GFAP+ astrocytes. RNAi targeting of EIF2B5 severely compromised the induction of GFAP+ cells from normal human glial progenitors. This raises the possibility that a deficiency in astrocyte function may contribute to the loss of white matter in VWM leukodystrophy.

1 Follower
27 Reads
  • Source
    • "A similar situation exists in vanishing white matter disease, a leukodystrophy caused by mutations in subunits of eukaryotic translation initiation factor eIF2B. Unlike Gfap, eIF2B is expressed in all cells, but nonetheless the pathophysiological effects of eIF2B mutations preferentially target white matter tracts resulting in cystic changes associated with extensive demyelination and axonal loss (Dietrich and others 2005). The effector pathways responsible for demyelination and neurodegeneration in these genetic diseases are poorly understood, but circumstantial evidence suggests a role for glutamate-mediated excitotoxicity in Alexander disease. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes are the most abundant cell type in the adult central nervous system (CNS), and their functional diversity in response to injury is now being appreciated. Astrocytes have long been considered the main player in the inhibition of CNS repair via the formation of the gliotic scar, but now it is accepted that astrocyte can play an important role in CNS repair and remyelination. Interest in the relationship between astrocytes and myelination focused initially on attempts to understand how the development of plaques of astroglial scar tissue in multiple sclerosis was related to the failure of these lesions to remyelinate. It is now considered that this is an end stage pathological response to injury, and that normally astrocytes play important roles in supporting the development and maintenance of CNS myelin. This review will focus on how this new understanding may be exploited to develop new strategies to enhance remyelination in multiple sclerosis and other diseases.
    The Neuroscientist 11/2012; 19(5). DOI:10.1177/1073858412465655 · 6.84 Impact Factor
  • Source
    • "The neuropathological features of eIF2B related disorders show an increased oligodendrocytic density [18], [19] and a reduced number of dystrophic astrocytes due to their abnormal maturation [20], suggesting an abnormal glial cell maturation in the WM susceptibility to eIF2B mutations. Moreover, mild transitory abnormal myelination has been reported in mice homozygous for a mutant Eif2b5 allele (Eif2b5 R132H/R132H mice) with an early defect of glial cells proliferation and maturation [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Leukodystrophies (LD) are rare inherited disorders that primarily affect the white matter (WM) of the central nervous system. The large heterogeneity of LD results from the diversity of the genetically determined defects that interfere with glial cells functions. Astrocytes have been identified as the primary target of LD with cystic myelin breakdown including those related to mutations in the ubiquitous translation initiation factor eIF2B. EIF2B is involved in global protein synthesis and its regulation under normal and stress conditions. Little is known about how eIF2B mutations have a major effect on WM. We performed a transcriptomic analysis using fibroblasts of 10 eIF2B-mutated patients with a severe phenotype and 10 age matched patients with other types of LD in comparison to control fibroblasts. ANOVA was used to identify genes that were statistically significantly differentially expressed at basal state and after ER-stress. The pattern of differentially expressed genes between basal state and ER-stress did not differ significantly among each of the three conditions. However, 70 genes were specifically differentially expressed in eIF2B-mutated fibroblasts whatever the stress conditions tested compared to controls, 96% being under-expressed. Most of these genes were involved in mRNA regulation and mitochondrial metabolism. The 13 most representative genes, including genes belonging to the Heterogeneous Nuclear Ribonucleoprotein (HNRNP) family, described as regulators of splicing events and stability of mRNA, were dysregulated during the development of eIF2B-mutated brains. HNRNPH1, F and C mRNA were over-expressed in foetus but under-expressed in children and adult brains. The abnormal regulation of HNRNP expression in the brain of eIF2B-mutated patients was concomitant with splicing dysregulation of the main genes involved in glial maturation such as PLP1 for oligodendrocytes and GFAP in astrocytes. These findings demonstrate a developmental deregulation of splicing events in glial cells that is related to abnormal production of HNRNP, in eIF2B-mutated brains.
    PLoS ONE 06/2012; 7(6):e38264. DOI:10.1371/journal.pone.0038264 · 3.23 Impact Factor
  • Source
    • "The diagnosis of CACH/VWM is based on MRI scans showing decreased brain white matter signals. The disease predominantly affects oligodendrocytes and astrocytes, while neurons are relatively preserved [3]–[9]. An R136H mutation in the human EIF2B5 gene, encoding the catalytic subunit of eIF2B, is known to cause the classical form of CACH/VWM when present in a homozygous state. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in eukaryotic translation initiation factor 2B (eIF2B) cause Childhood Ataxia with CNS Hypomyelination (CACH), also known as Vanishing White Matter disease (VWM), which is associated with a clinical pathology of brain myelin loss upon physiological stress. eIF2B is the guanine nucleotide exchange factor (GEF) of eIF2, which delivers the initiator tRNA(Met) to the ribosome. We recently reported that a R132H mutation in the catalytic subunit of this GEF, causing a 20% reduction in its activity, leads under normal conditions to delayed brain development in a mouse model for CACH/VWM. To further explore the effect of the mutation on global gene expression in the brain, we conducted a wide-scale transcriptome analysis of the first three critical postnatal weeks. Genome-wide mRNA expression of wild-type and mutant mice was profiled at postnatal (P) days 1, 18 and 21 to reflect the early proliferative stage prior to white matter establishment (P1) and the peak of oligodendrocye differentiation and myelin synthesis (P18 and P21). At each developmental stage, between 441 and 818 genes were differentially expressed in the mutant brain with minimal overlap, generating unique time point-specific gene expression signatures. The current study demonstrates that a point mutation in eIF2B, a key translation initiation factor, has a massive effect on global gene expression in the brain. The overall changes in expression patterns reflect multiple layers of indirect effects that accumulate as the brain develops and matures. The differentially expressed genes seem to reflect delayed waves of gene expression as well as an adaptation process to cope with hypersensitivity to cellular stress.
    PLoS ONE 10/2011; 6(10):e26992. DOI:10.1371/journal.pone.0026992 · 3.23 Impact Factor
Show more