Mutation of chicken anemia virus VP2 differentially affects serine/threonine and tyrosine protein phosphatase activities

Royal Melbourne Hospital, Melbourne, Victoria, Australia
Journal of General Virology (Impact Factor: 3.18). 04/2005; 86(Pt 3):623-30. DOI: 10.1099/vir.0.80197-0
Source: PubMed


Novel dual-specificity protein phosphatases (DSPs), which catalyse the removal of phosphate from both phosphotyrosine and phosphoserine/phosphothreonine substrates, have recently been identified in two viruses within the family Circoviridae. Viral protein 2 (VP2) of chicken anemia virus (CAV) and ORF2 of TT virus have been shown to possess DSP activity in vitro. CAV VP2 is unusual in possessing two vicinal cysteines within the protein phosphatase signature motif. The first cysteine residue (C95) within the motif has been identified by mutagenesis as the essential catalytic cysteine. In this study, it was shown that virus mutated at this residue displayed a marked inhibition of growth, with titres reduced 10(4)-fold, and reduced cytopathogenic effect in cell culture, indicating that viral DSP activity may be significant during infection. As with virus mutated at the first cysteine residue, mutation of the second cysteine (C97) within the motif resulted in a marked reduction in viral growth and attenuation of cytopathogenicity in infected cell cultures. However, mutagenesis of this second cysteine only reduced phosphotyrosine phosphatase activity to 70 % of that of wild-type VP2, but increased phosphoserine/phosphothreonine phosphatase activity by as much as 700 %. The differential effect of the C97S mutation on VP2 activity does not appear to have parallels in other DSPs and suggests a unique role for the second cysteine in the function of these viral proteins, particularly in vivo.

Full-text preview

Available from:
  • Source
    • "VP2 has been shown to contain dual phosphatase activity and this activity is required for CAV replication [17,31]. However, in this context, very little is known about the role this protein plays in the regulation of viral DNA replication. "
    [Show abstract] [Hide abstract]
    ABSTRACT: VP2 of chicken anemia virus (CAV) is a dual-specificity phosphatase required for virus infection, assembly and replication. The functions of the nuclear localization signal (NLS) and nuclear export signal (NES) of VP2 in the cell, however, are poorly understood. Our study identified the presence of a NLS in VP2 and showed that the protein interacted significantly with mini-chromosome maintenance protein 3 (MCM3) in the cell. An arginine-lysine rich NLS could be predicted by software and spanned from amino acids 133 to 138 of VP2. The critical amino acids residues between positions 136 and 138, and either residue 133 or 134 are important for nuclear import in mammalian cells based on systematic mutagenesis. A NES is also predicted in VP2; however the results suggest that no functional NES is present and that this protein is CRM1 independent. It was also shown that VP2 is a chromatin binding protein and, notably, using a co-immunoprecipitation assay, it was found that VP2 association with MCM3 and that this interaction does not require DSP activity. VP2 contains a NLS that span from amino acids 133 to 138. VP2 is a CRM1 independent protein during nuclear export and associates with MCM3 in cells.
    BMC Veterinary Research 02/2012; 8(1):15. DOI:10.1186/1746-6148-8-15 · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: "Propositions" ([1] leaf) inserted. Thesis (doctoral)--Wageningen Universiteit, 2006. Vita. Includes bibliographical references (p. 85-102).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chicken anemia virus (CAV) is an immunosuppressive pathogen of chickens. To further examine the role of viral protein 2 (VP2), which possesses dual-specificity protein phosphatase (DSP) activity, in viral cytopathogenicity and its influence on viral growth and virulence, an infectious genomic clone of CAV was subjected to site-directed mutagenesis. Substitution mutations C87R, R101G, K102D and H103Y were introduced into the DSP catalytic motif and R129G, Q131P, R/K/K150/151/152G/A/A, D/E161/162G/G, L163P, D169G and E186G into a region predicted to have a high degree of secondary structure. All mutant constructs were infectious, but their growth curves differed. The growth curve for mutant virus R/K/K150/151/152G/A/A was similar to that for wild-type virus, a second cluster of mutant viruses had an extended latent period and a third cluster of mutant viruses had extended latent and eclipse periods. All mutants had a reduced cytopathogenic effect in infected cells and VP3 was restricted to the cytoplasm. Mutation of the second basic residue (K102D) in the atypical DSP signature motif resulted in a marked reduction in virus replication efficiency, whereas mutation of the first basic residue (R101G) attenuated cytopathogenicity, but did not reduce replication efficiency. Expression of major histocompatibility complex (MHC) class I was markedly downregulated in cells infected with wild-type CAV, but not in those infected with mutants. This study further demonstrates the significance of VP2 in CAV replication and shows that specific mutations introduced into the gene encoding this protein can reduce virus replication, cytopathogenicity and downregulation of MHC I in infected cells.
    Journal of General Virology 05/2006; 87(Pt 4):823-31. DOI:10.1099/vir.0.81468-0 · 3.18 Impact Factor
Show more