Furosemide and mannitol suppression of epileptic activity in the human brain.

Department of Surgery (Neurosurgery) and Neurobiology, Durham, NC 27710, USA.
Journal of Neurophysiology (Impact Factor: 3.04). 09/2005; 94(2):907-18. DOI: 10.1152/jn.00944.2004
Source: PubMed

ABSTRACT Most research on basic mechanisms of epilepsy and the design of new antiepileptic drugs has focused on synaptic transmission or action potential generation. However, a number of laboratory studies have suggested that nonsynaptic mechanisms, such as modulation of electric field interactions via the extracellular space (ECS), might also contribute to neuronal hypersynchrony and epileptogenicity. To date, a role for nonsynaptic modulation of epileptic activity in the human brain has not been investigated. Here we studied the effects of molecules that modulate the volume and water content of the ECS on epileptic activity in patients suffering from neocortical and mesial temporal lobe epilepsy. Electrophysiological and optical imaging data were acquired from the exposed cortices of anesthetized patients undergoing surgical treatment for intractable epilepsy. Patients were given a single intravenous injection containing either 20 mg furosemide (a cation-chloride cotransporter antagonist) or 50 g mannitol (an osmolyte). Furosemide and mannitol both significantly suppressed spontaneous epileptic spikes and electrical stimulation-evoked epileptiform discharges in all subjects, completely blocking all epileptic activity in some patients without suppressing normal electroencephalographic activity. Optical imaging suggested that the spread of electrical stimulation-evoked activity over the cortex was significantly reduced by these treatments, but the magnitude of neuronal activation near the stimulating electrode was not diminished. These results suggest that nonsynaptic mechanisms play a critical role in modulating the epileptogenicity of the human brain. Furosemide and other drugs that modulate the ECS might possess clinically useful antiepileptic properties, while avoiding the side effects associated with the suppression of neuronal excitability.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RESUMEN Objetivo: Revisar la literatura sobre los principios cardinales para el diagnóstico y tratamiento adecuado del estado epiléptico. Desarrollo: Se evalúa y enfatiza en los principios cardinales para el manejo adecuado del estado epiléptico: 1) La actualización de los criterios diagnósticos, los subtipos semiológicos y el diagnóstico etiológico de la entidad para obtener una mayor relevancia clínica, 2) Las vías para agilizar el inicio de la terapia de primera línea con benzodiacepinas y la aplicación inmediata de los restantes tratamientos en las formas refractarias, y 3) Los métodos para el diagnóstico precoz y tratamiento apropiado del estado epiléptico no convulsivo. En el diagnóstico del estado epiléptico se abordan las concepciones con respecto al tiempo de duración de las crisis epilépticas y los tipos de crisis epilépticas englobadas en la definición. Se adoptan los términos y descripciones semiológicas más actuales expresadas por la Liga Internacional contra la Epilepsia (ILAE). En un último acápite se abordan las pautas antiepilépticas iniciales y anestésicas que se indican para controlar las crisis epilépticas lo más rápido posible. También se delinean las medidas para evitar y tratar las complicaciones sistémicas relacionadas con el estado epiléptico y los efectos adversos de los antiepilépticos. Conclusiones: Se precisan de investigaciones amplias que valoren la efectividad de las terapias individuales acorde al mecanismo de las crisis epilépticas, semiología, duración, causas, complicaciones asociadas y cambios dinámicos que potencian el estado epiléptico y la lesión neuronal. Palabras clave. Crisis psicógenas. Electroencefalografía. Epilepsia. Epilepsia del lóbulo frontal. Epilepsias mioclónicas. Epilepsia tipo ausencia. Epilepsia tónico–clónica. Estado epiléptico. INTRODUCCIÓN El estado epiléptico es una emergencia neurológica común y frecuentemente devastadora. Es el resultado de la falla de los mecanismos naturales supresores de las crisis epilépticas (1–4). Esta revisión evalúa los principios cardinales para el manejo adecuado del estado epiléptico: 1) La actualización de los criterios diagnósticos de la entidad, los subtipos semiológicos y las causas para obtener una mayor relevancia clínica, 2) Las vías para agilizar el inicio de la terapia de primera línea con benzodiacepinas y la aplicación inmediata de los restantes tratamientos en las formas refractarias, y 3) Los métodos para el diagnóstico precoz y el tratamiento apropiado del estado epiléptico no convulsivo (SENC).
  • [Show abstract] [Hide abstract]
    ABSTRACT: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.
    Neural Regeneration Research 03/2013; 8(8):745-53. · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
    Frontiers in Cellular Neuroscience 05/2014; 8:119. · 4.18 Impact Factor