Article

Midbrain ataxia: an introduction to the mesencephalic locomotor region and the pedunculopontine nucleus.

Department of Radiology, Geffen School of Medicine, University of California-Los Angeles Medical Center, Los Angeles, CA 90095, USA.
American Journal of Roentgenology (Impact Factor: 2.9). 04/2005; 184(3):953-6.
Source: PubMed

ABSTRACT OBJECTIVE: Although gait ataxia is usually associated with cerebellar lesions, we review a less familiar cause. We present three patients with dorsal midbrain lesions and correlate these presentations with recent findings in the functional anatomy of the midbrain. CONCLUSION: We suggest that these lesions involve a well-studied but generally unfamiliar area of the dorsal midbrain known as the mesencephalic locomotor region. More specifically, we hypothesize that involvement of the pedunculopontine nucleus, a major component of the mesencephalic locomotor region, may be at least partially responsible for producing midbrain ataxia.

0 Bookmarks
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Locomotion in humans and other vertebrates is based on spinal pattern generators, which are regulated by supraspinal control. Most of our knowledge about the hierarchical network of supraspinal locomotion centres derives from animal experiments, mainly in the cat. Here we summarize evidence that the supraspinal network of quadrupeds is conserved in humans despite their transition to bipedalism. By use of mental imagery of locomotion in fMRI we found (1), locomotion modulates sensory systems and is itself modulated by sensory signals. During automated locomotion in healthy subjects cortical sensory inhibition occurs in vestibular and somatosensory areas; this inhibition is cancelled in the congenitally blind; (2), we delineated separate and distinct areas in the brainstem and cerebellum which are remarkably similar to the feline locomotor network. The activations found here include homologues to the pacemakers for gait initiation and speed regulation in the interfastigial cerebellum and bilateral midbrain tegmentum (cerebellar and mesencephalic locomotor regions), their descending target regions in the pontine reticular formation, and the rhythm generators in the cerebellar vermis and paravermal cerebellar cortex. This conservation of the basic organization of supraspinal locomotor control during vertebrate phylogeny opens new perspectives for both, the diagnosis and treatment of common gait disorders. It is conceivable that electrical stimulation of locomotor brain stem centres may initiate and improve gait in selected patients suffering from Parkinson's disease or progressive supranuclear palsy.
    Progress in brain research 02/2008; 171:353-62. · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with neurological gait disorders often present to their doctor with the key symptoms of dizziness and gait unsteadiness (e.g. cerebellar ataxia, progressive supranuclear palsy). In vestibular syndromes, on the other hand, the gait disturbance is a leading sign and many aspects of the syndrome can be recognized from the analysis of posture and gait (e.g. direction of falls). For therapy in particular it is important to better understand the physiological control of posture and gait to adapt rehabilitation programs. We recently succeeded in visualizing the hierarchic network for postural control in humans by means of functional imaging techniques. Growing evidence suggests that so-called "locomotor regions", groups of neurons able to initiate or modulate spinal stepping in the cat in response to electrical or chemical stimulation, also exist in humans. The most important locomotor regions are the mesencephalic, the subthalamic, and the cerebellar locomotor regions. Locomotor signals are transmitted from the midbrain to the spinal cord via the ponto-medullary reticular formation and integrate multisensory input at different levels. Functional imaging also demonstrated that the multisensory cortical areas are inhibited during locomotion, which is relevant for physical therapy of vestibular disorders which therefore should include exercises with different gait patterns and different speeds. The supraspinal network for locomotion is just beginning to be recognized as an important factor in the pathophysiology of common gait disorders. In Parkinson's disease, for example, low-frequency stimulation of the mesencephalic locomotor region (pedunculopontine nucleus) is already used to treat freezing and gait disturbance in selected patients. In this review we summarize different attempts to visualize human supraspinal locomotor control using functional neuroimaging techniques, both in healthy subjects and in patients suffering from balance disorders.
    Restorative neurology and neuroscience 01/2010; 28(1):105-14. · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Standing, walking, and running are sensorimotor tasks that develop during childhood. Thereafter they function automatically as a result of a supraspinal network that controls spinal pattern generators. The present study used functional magnetic resonance imaging (fMRI) to investigate age-dependent changes in the supraspinal locomotor and postural network of normal subjects during mental imagery of locomotion and stance. Sixty healthy subjects (ages: 24-78 years), who had undergone a complete neurological, neuro-ophthalmological, and sensory examination to rule out disorders of balance and gait, were trained for the conditions lying, standing, walking, and running in order to imagine these conditions on command in 20-second sequences with the eyes closed while lying supine in an magnetic resonance imaging (MRI) scanner. The following blood oxygen level-dependent (BOLD) signal changes during locomotion and stance were found to be independent of age: (1) prominent activations in the supplementary motor areas, the caudate nuclei, visual cortical areas, vermal, and paravermal cerebellum; (2) significant deactivations in the multisensory vestibular cortical areas (posterior insula, parietoinsular vestibular gyrus, superior temporal gyrus), and the anterior cingulate during locomotion. The following differences in brain activation during locomotion and stance were age-dependent: relative increases in the cortical BOLD signals in the multisensory vestibular cortices, motion-sensitive visual cortices (MT/V5), and somatosensory cortices (right postcentral gyrus). In advanced age this multisensory activation was most prominent during standing, less during walking, and least during running. In conclusion, the functional activation of the basic locomotor and postural network, which includes the prefrontal cortex, basal ganglia, brainstem, and cerebellar locomotor centers, is preserved in the elderly. Two major age-dependent aspects of brain activation during locomotion and stance were found: the mechanism of cortical inhibitory reciprocal interaction between sensory systems during locomotion and stance declines in advanced age; and consequently, multisensory cortical control of locomotion and stance increases with age. These findings may indicate a more conscious locomotor and postural strategy in the elderly.
    Neurobiology of aging 11/2010; 33(6):1073-84. · 5.94 Impact Factor