Firefly luciferase enzyme fragment complementation for imaging in cells and living animals.

Molecular Imaging Program at Stanford (MIPS), Department of Radiology and the Bio-X Program, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, East Wing, First Floor, Stanford, California 94305-5427, USA.
Analytical Chemistry (Impact Factor: 5.83). 04/2005; 77(5):1295-302. DOI: 10.1021/ac0484777
Source: PubMed

ABSTRACT We identified different fragments of the firefly luciferase gene based on the crystal structure of firefly luciferase. These split reporter genes which encode for protein fragments, unlike the fragments currently used for studying protein-protein interactions, can self-complement and provide luciferase enzyme activity in different cell lines in culture and in living mice. The comparison of the fragment complementation associated recovery of firefly luciferase enzyme activity with intact firefly luciferase was estimated for different fragment combinations and ranged from 0.01 to 4% of the full firefly luciferase activity. Using a cooled optical charge-coupled device camera, the analysis of firefly luciferase fragment complementation in transiently transfected subcutaneous 293T cell implants in living mice showed significant detectable enzyme activity upon injecting d-luciferin, especially from the combinations of fragments identified (Nfluc and Cfluc are the N and C fragments of the firefly luciferase gene, respectively): Nfluc (1-475)/Cfluc (245-550), Nfluc (1-475)/Cfluc (265-550), and Nfluc (1-475)/Cfluc (300-550). The Cfluc (265-550) fragment, upon expression with the nuclear localization signal (NLS) peptide of SV40, shows reduced enzyme activity when the cells are cotransfected with the Nfluc (1-475) fragment expressed without NLS. We also proved in this study that the complementing fragments could be efficiently used for screening macromolecule delivery vehicles by delivering TAT-Cfluc (265-550) to cells stably expressing Nfluc (1-475) and recovering signal. These complementing fragments should be useful for many reporter-based assays including intracellular localization of proteins, studying cellular macromolecule delivery vehicles, studying cell-cell fusions, and also developing intracellular phosphorylation sensors based on fragment complementation.

  • Bunseki kagaku 01/2009; 58(6):435-446. · 0.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The luciferase fragment complementation assay (LFCA) enables molecular events to be non-invasively imaged in live cells in vitro and in vivo in a comparatively cheap and safe manner. It is a development of previous enzyme complementation assays in which reporter genes are split into two, individually enzymatically inactive, fragments that are able to complement one another upon interaction. This complementation can be used to externally visualize cellular activities. In recent years, the number of studies which have used LFCAs to probe questions relevant to cancer have increased, and this review summarizes the most significant and interesting of these. In particular, it focuses on work conducted on the epidermal growth factor, nuclear and chemokine receptor families, and intracellular signaling pathways, including IP3, cAMP, Akt, cMyc, NRF2 and Rho GTPases. LFCAs which have been developed to image DNA methylation and detect RNA transcripts are also discussed.
    Oncoscience. 01/2014; 1(5):310-25.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bioluminescence imaging is widely used for cell-based assays and animal imaging studies in biomedical research and drug development, capitalizing on the high signal to background of this technique. A relatively small number of luciferases are available for imaging studies, substantially limiting the ability to image multiple molecular and cellular events, as done commonly with fluorescence imaging. To advance dual reporter bioluminescence molecular imaging, we tested a recently developed, adenosine triphosphate–independent luciferase enzyme from Oplophorus gracilirostris (NanoLuc [NL]) as a reporter for animal imaging. We demonstrated that NL could be imaged in superficial and deep tissues in living mice, although the detection of NL in deep tissues was limited by emission of predominantly blue light by this enzyme. Changes in bioluminescence from NL over time could be used to quantify tumor growth, and secreted NL was detectable in small volumes of serum. We combined NL and firefly luciferase reporters to quantify two key steps in transforming growth factor β signaling in intact cells and living mice, establishing a novel dual luciferase imaging strategy for quantifying signal transduction and drug targeting. Our results establish NL as a new reporter for bioluminescence imaging studies in intact cells and living mice that will expand imaging of signal transduction in normal physiology, disease, and drug development.
    Molecular Imaging 10/2013; 12(7):1-13. · 3.41 Impact Factor