Article

Firefly luciferase enzyme fragment complementation for imaging in cells and living animals

Stanford University, Palo Alto, California, United States
Analytical Chemistry (Impact Factor: 5.83). 04/2005; 77(5):1295-302. DOI: 10.1021/ac0484777
Source: PubMed

ABSTRACT We identified different fragments of the firefly luciferase gene based on the crystal structure of firefly luciferase. These split reporter genes which encode for protein fragments, unlike the fragments currently used for studying protein-protein interactions, can self-complement and provide luciferase enzyme activity in different cell lines in culture and in living mice. The comparison of the fragment complementation associated recovery of firefly luciferase enzyme activity with intact firefly luciferase was estimated for different fragment combinations and ranged from 0.01 to 4% of the full firefly luciferase activity. Using a cooled optical charge-coupled device camera, the analysis of firefly luciferase fragment complementation in transiently transfected subcutaneous 293T cell implants in living mice showed significant detectable enzyme activity upon injecting d-luciferin, especially from the combinations of fragments identified (Nfluc and Cfluc are the N and C fragments of the firefly luciferase gene, respectively): Nfluc (1-475)/Cfluc (245-550), Nfluc (1-475)/Cfluc (265-550), and Nfluc (1-475)/Cfluc (300-550). The Cfluc (265-550) fragment, upon expression with the nuclear localization signal (NLS) peptide of SV40, shows reduced enzyme activity when the cells are cotransfected with the Nfluc (1-475) fragment expressed without NLS. We also proved in this study that the complementing fragments could be efficiently used for screening macromolecule delivery vehicles by delivering TAT-Cfluc (265-550) to cells stably expressing Nfluc (1-475) and recovering signal. These complementing fragments should be useful for many reporter-based assays including intracellular localization of proteins, studying cellular macromolecule delivery vehicles, studying cell-cell fusions, and also developing intracellular phosphorylation sensors based on fragment complementation.

0 Followers
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The specificity of intracellular signaling and developmental patterning in biological systems relies on selective interactions between different proteins in specific cellular compartments. The identification of such protein-protein interactions is essential for unraveling complex signaling and regulatory networks. Recently, bimolecular fluorescence complementation (BiFC) has emerged as a powerful technique for the efficient detection of protein interactions in their native subcellular localization. Here we report significant technical advances in the methodology of plant BiFC. We describe a series of versatile BiFC vector sets that are fully compatible with previously generated vectors. The new vectors enable the generation of both C-terminal and N-terminal fusion proteins and carry optimized fluorescent protein genes that considerably improve the sensitivity of BiFC. Using these vectors, we describe a multicolor BiFC (mcBiFC) approach for the simultaneous visualization of multiple protein interactions in the same cell. Application to a protein interaction network acting in calcium-mediated signal transduction revealed the concurrent interaction of the protein kinase CIPK24 with the calcium sensors CBL1 and CBL10 at the plasma membrane and tonoplast, respectively. We have also visualized by mcBiFC the simultaneous formation of CBL1/CIPK1 and CBL9/CIPK1 protein complexes at the plasma membrane. Thus, mcBiFC provides a useful new tool for exploring complex regulatory networks in plants.
    The Plant Journal 11/2008; 56(3):505-16. DOI:10.1111/j.1365-313X.2008.03612.x · 6.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of sensitive and versatile techniques to detect protein-protein interactions in vivo is important for understanding protein functions. The previously described techniques, fluorescence resonance energy transfer and bimolecular fluorescence complementation, which are used widely for protein-protein interaction studies in plants, require extensive instrumentation. To facilitate protein-protein interaction studies in plants, we adopted the luciferase complementation imaging assay. The amino-terminal and carboxyl-terminal halves of the firefly luciferase reconstitute active luciferase enzyme only when fused to two interacting proteins, and that can be visualized with a low-light imaging system. A series of plasmid constructs were made to enable the transient expression of fusion proteins or generation of stable transgenic plants. We tested nine pairs of proteins known to interact in plants, including Pseudomonas syringae bacterial effector proteins and their protein targets in the plant, proteins of the SKP1-Cullin-F-box protein E3 ligase complex, the HSP90 chaperone complex, components of disease resistance protein complex, and transcription factors. In each case, strong luciferase complementation was observed for positive interactions. Mutants that are known to compromise protein-protein interactions showed little or much reduced luciferase activity. Thus, the assay is simple, reliable, and quantitative in detection of protein-protein interactions in plants.
    Plant physiology 03/2008; 146(2):368-76. DOI:10.1104/pp.107.111740 · 7.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bimolecular fluorescence complementation (BiFC) is a recently developed technique for detection of protein-protein interactions in living cells. In this study, a new red BiFC system was developed by splitting mCherry, a mutant monomeric red fluorescent protein, into two fragments between amino acids 159-160 and was verified using a pair of interacting proteins, SV40 large T antigen (LTag), and human p53 protein. By combined use of the mCherry-based red BiFC system with a Venus-based yellow BiFC system, the interaction between LTag and p53 as well as the interaction between sp100 and promyelocytic leukemia protein (PML), were detected simultaneously in Vero cells. The brilliant redness, short maturation time, and the long excitation and emission wavelengths (587/610 nm) of mCherry make the new BiFC system an excellent candidate for analyzing protein-protein interactions in living cells and for studying multiple protein-protein interactions when coupled with other BiFC systems.
    Biochemical and Biophysical Research Communications 03/2008; 367(1):47-53. DOI:10.1016/j.bbrc.2007.12.101 · 2.28 Impact Factor