Article

Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma.

Laboratorio di Ematologia Sperimentale e Genetica Molecolare and U.O. Ematologia 1, Dipartimento di Scienze Mediche, Università degli Studi di Milano, Ospedale Maggiore IRCCS, Milano, Italy.
Oncogene (Impact Factor: 7.36). 05/2005; 24(15):2461-73. DOI: 10.1038/sj.onc.1208447
Source: PubMed

ABSTRACT Multiple myeloma (MM) is the most common form of plasma cell dyscrasia, characterized by a marked heterogeneity of genetic lesions and clinical course. It may develop from a premalignant condition (monoclonal gammopathy of undetermined significance, MGUS) or progress from intramedullary to extramedullary forms (plasma cell leukemia, PCL). To provide insights into the molecular characterization of plasma cell dyscrasias and to investigate the contribution of specific genetic lesions to the biological and clinical heterogeneity of MM, we analysed the gene expression profiles of plasma cells isolated from seven MGUS, 39 MM and six PCL patients by means of DNA microarrays. MMs resulted highly heterogeneous at transcriptional level, whereas the differential expression of genes mainly involved in DNA metabolism and proliferation distinguished MGUS from PCLs and the majority of MM cases. The clustering of MM patients was mainly driven by the presence of the most recurrent translocations involving the immunoglobulin heavy-chain locus. Distinct gene expression patterns have been found to be associated with different lesions: the overexpression of CCND2 and genes involved in cell adhesion pathways was observed in cases with deregulated MAF and MAFB, whereas genes upregulated in cases with the t(4;14) showed apoptosis-related functions. The peculiar finding in patients with the t(11;14) was the downregulation of the alpha-subunit of the IL-6 receptor. In addition, we identified a set of cancer germline antigens specifically expressed in a subgroup of MM patients characterized by an aggressive clinical evolution, a finding that could have implications for patient classification and immunotherapy.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Multiple myeloma is a fatal malignant proliferation of clonal bone marrow Ig-secreting plasma cells, characterized by wide clinical, biological, and molecular heterogeneity. Areas covered: Herein, global gene and microRNA expression, genome-wide DNA profilings, and next-generation sequencing technology used to investigate the genomic alterations underlying the bio-clinical heterogeneity in multiple myeloma are discussed. Expert opinion: High-throughput technologies have undoubtedly allowed a better comprehension of the molecular basis of the disease, a fine stratification, and early identification of high-risk patients, and have provided insights toward targeted therapy studies. However, such technologies are at risk of being affected by laboratory- or cohort-specific biases, and are moreover influenced by high number of expected false positives. This aspect has a major weight in myeloma, which is characterized by large molecular heterogeneity. Therefore, meta-analysis as well as multiple approaches are desirable if not mandatory to validate the results obtained, in line with commonly accepted recommendation for tumor diagnostic/prognostic biomarker studies.
    Expert opinion on biological therapy 04/2013; · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Defective apoptosis is a hallmark of the progression of B chronic lymphocytic leukaemia (B-CLL). Smac-mimetics have been shown to induce apoptosis in several tumours. We describe the in vitro pro-apoptotic activity and regulation of the molecular pathway induced by new Smac-mimetics in B-CLL. The cytotoxic effect was significantly higher in B-CLL samples than in healthy controls. No significant synergistic effect was observed in combined treatment. In conclusion one of our compounds (Smac66), used as monotherapy and not in combination, is highly active against B-CLL cells thus suggesting a promising therapeutic potential as a new class of antileukemic drugs in haematology.
    Leukemia research 04/2013; · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of a dysregulated NF-κB/Snail/YY1/RKIP loop was recently established in metastatic prostate cancer cells and non-Hodgkin's lymphoma; however, its involvement in multiple myeloma (MM) has yet to be investigated. Aim of the study was to investigate the role of the NF-κB/Snail/YY1/RKIP circuitry in MM and how each gene is correlated with the remaining genes of the loop. Using gene set enrichment analysis and gene neighbours analysis in data received from four datasets included in the Multiple Myeloma Genomics Portal of the Multiple Myeloma Research Consortium, we identified various enriched gene sets associated with each member of the NF-κB/Snail/YY1/RKIP circuitry. In each dataset, the 20 most co-expressed genes with the circuitry genes were isolated subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. Among many, we highlighted on FNDC3B, TPD52, BBX, MBNL1 and MFAP2. Many co-expressed genes participated in the regulation of metabolic processes and nucleic acid binding, or were transcription factor binding genes and genes with metallopeptidase activity. The transcription factors FOXO4, GATA binding factor, Sp1 and AP4 most likely affect the expression of the NF-κB/Snail/YY1/RKIP circuitry genes. Computational analysis of various GEO datasets revealed elevated YY1 and RKIP levels in MM vs. the normal plasma cells, as well as elevated RKIP levels in MM vs. normal B lymphocytes. The present study highlights the relationships of the NF-κB/Snail/YY1/RKIP circuitry genes with specific cancer-related gene sets in multiple myeloma.
    Tumor Biology 01/2014; · 2.52 Impact Factor

Full-text

View
9 Downloads
Available from
May 23, 2014