Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma.

Laboratorio di Ematologia Sperimentale e Genetica Molecolare and U.O. Ematologia 1, Dipartimento di Scienze Mediche, Università degli Studi di Milano, Ospedale Maggiore IRCCS, Milano, Italy.
Oncogene (Impact Factor: 8.56). 05/2005; 24(15):2461-73. DOI: 10.1038/sj.onc.1208447
Source: PubMed

ABSTRACT Multiple myeloma (MM) is the most common form of plasma cell dyscrasia, characterized by a marked heterogeneity of genetic lesions and clinical course. It may develop from a premalignant condition (monoclonal gammopathy of undetermined significance, MGUS) or progress from intramedullary to extramedullary forms (plasma cell leukemia, PCL). To provide insights into the molecular characterization of plasma cell dyscrasias and to investigate the contribution of specific genetic lesions to the biological and clinical heterogeneity of MM, we analysed the gene expression profiles of plasma cells isolated from seven MGUS, 39 MM and six PCL patients by means of DNA microarrays. MMs resulted highly heterogeneous at transcriptional level, whereas the differential expression of genes mainly involved in DNA metabolism and proliferation distinguished MGUS from PCLs and the majority of MM cases. The clustering of MM patients was mainly driven by the presence of the most recurrent translocations involving the immunoglobulin heavy-chain locus. Distinct gene expression patterns have been found to be associated with different lesions: the overexpression of CCND2 and genes involved in cell adhesion pathways was observed in cases with deregulated MAF and MAFB, whereas genes upregulated in cases with the t(4;14) showed apoptosis-related functions. The peculiar finding in patients with the t(11;14) was the downregulation of the alpha-subunit of the IL-6 receptor. In addition, we identified a set of cancer germline antigens specifically expressed in a subgroup of MM patients characterized by an aggressive clinical evolution, a finding that could have implications for patient classification and immunotherapy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of a dysregulated NF-κB/Snail/YY1/RKIP loop was recently established in metastatic prostate cancer cells and non-Hodgkin's lymphoma; however, its involvement in multiple myeloma (MM) has yet to be investigated. Aim of the study was to investigate the role of the NF-κB/Snail/YY1/RKIP circuitry in MM and how each gene is correlated with the remaining genes of the loop. Using gene set enrichment analysis and gene neighbours analysis in data received from four datasets included in the Multiple Myeloma Genomics Portal of the Multiple Myeloma Research Consortium, we identified various enriched gene sets associated with each member of the NF-κB/Snail/YY1/RKIP circuitry. In each dataset, the 20 most co-expressed genes with the circuitry genes were isolated subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. Among many, we highlighted on FNDC3B, TPD52, BBX, MBNL1 and MFAP2. Many co-expressed genes participated in the regulation of metabolic processes and nucleic acid binding, or were transcription factor binding genes and genes with metallopeptidase activity. The transcription factors FOXO4, GATA binding factor, Sp1 and AP4 most likely affect the expression of the NF-κB/Snail/YY1/RKIP circuitry genes. Computational analysis of various GEO datasets revealed elevated YY1 and RKIP levels in MM vs. the normal plasma cells, as well as elevated RKIP levels in MM vs. normal B lymphocytes. The present study highlights the relationships of the NF-κB/Snail/YY1/RKIP circuitry genes with specific cancer-related gene sets in multiple myeloma.
    Tumor Biology 01/2014; · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have revealed a pivotal role played by a class of small, noncoding RNAs, microRNA (miRNA), in multiple myeloma (MM), a plasma cell (PC) malignancy causing significant morbidity and mortality. Deregulated miRNA expression in patient's PCs and plasma has been associated with tumor progression, molecular subtypes, clinical staging, prognosis, and drug response in MM. A number of important oncogenic and tumor suppressor miRNAs have been discovered to regulate important genes and pathways such as p53 and IL6-JAK-STAT signaling. miRNAs may also form complex regulatory circuitry with genetic and epigenetic machineries, the deregulation of which could lead to malignant transformation and progression. The translational potential of miRNAs in the clinic is being increasingly recognized that they could represent novel biomarkers and therapeutic targets. This review comprehensively summarizes current progress in delineating the roles of miRNAs in MM pathobiology and management.
    BioMed Research International 01/2014; 2014:521586. · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A multistep model of disease progression starting in monoclonal gammopathy of undetermined significance continuing through multiple myeloma, sometimes with an intermediate entity called smoldering myeloma, and ending in extramedullary disease, has been proposed. To gain further insights into the role of the transcriptome deregulation in the transition from a normal plasma cell to a clonal plasma cell, and from an indolent clonal plasma cell to a malignant plasma cell, we performed gene expression profiling in 20 patients with monoclonal gammopathy of undetermined significance, 33 with high-risk smoldering myeloma and 41 with multiple myeloma. The analysis showed that 126 genes were differentially expressed in monoclonal gammopathy of undetermined significance, smoldering myeloma and multiple myeloma as compared to normal plasma cell. Interestingly, 17 and 9 out of the 126 significant differentially expressed genes were small nucleolar RNA molecules and zinc finger proteins. Several proapoptotic genes (AKT1 and AKT2) were downregulated and antiapoptotic genes (APAF1 and BCL2L1) were upregulated in multiple myeloma, both symptomatic and asymptomatic, compared to monoclonal gammopathy of undetermined significance. When we looked for those genes progressively modulated through the evolving stages of monoclonal gammopathies, eight snoRNA showed a progressive increase while APAF1, VCAN and MEGF9 exhibited a progressive downregulation. In conclusion, our data show that although monoclonal gammopathy of undetermined significance, smoldering myeloma and multiple myeloma are not clearly distinguishable groups according to their gene expression profiling, several signaling pathways and genes were significant deregulated in the different steps of transformation process.
    Haematologica 05/2014; · 5.94 Impact Factor


Available from
May 23, 2014