Article

Mutation in myosin heavy chain 6 causes atrial septal defect.

Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
Nature Genetics (Impact Factor: 29.65). 05/2005; 37(4):423-8. DOI: 10.1038/ng1526
Source: PubMed

ABSTRACT Atrial septal defect is one of the most common forms of congenital heart malformation. We identified a new locus linked with atrial septal defect on chromosome 14q12 in a large family with dominantly inherited atrial septal defect. The underlying mutation is a missense substitution, I820N, in alpha-myosin heavy chain (MYH6), a structural protein expressed at high levels in the developing atria, which affects the binding of the heavy chain to its regulatory light chain. The cardiac transcription factor TBX5 strongly regulates expression of MYH6, but mutant forms of TBX5, which cause Holt-Oram syndrome, do not. Morpholino knock-down of expression of the chick MYH6 homolog eliminates the formation of the atrial septum without overtly affecting atrial chamber formation. These data provide evidence for a link between a transcription factor, a structural protein and congenital heart disease.

2 Bookmarks
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiomyocyte cell death is a major contributing factor to various cardiovascular diseases and is therefore an important target for the design of therapeutic strategies. More recently, stem cell therapies, such as transplantation of embryonic or induced pluripotent stem (iPS) cell-derived cardiomyocytes, have emerged as a promising alternative therapeutic avenue to treating cardiovascular diseases. Nevertheless, survival of these introduced cells is a serious issue that must be solved before clinical application. We and others have identified a small non-coding RNA, microRNA-24 (miR-24), as a pro-survival molecule that inhibits the apoptosis of cardiomyocytes. However, these earlier studies delivered mimics or inhibitors of miR-24 via viral transduction or chemical transfection, where the observed protective role of miR-24 in cardiomyocytes might have partially resulted from its effect on non-cardiomyocyte cells. To elucidate the cardiomyocyte-specific effects of miR-24 when overexpressed, we developed a genetic model by generating a transgenic mouse line, where miR-24 expression is driven by the cardiac-specific Myh6 promoter. The Myh6-miR-24 transgenic mice did not exhibit apparent difference from their wild-type littermates under normal physiological conditions. However, when the mice were subject to myocardial infarction (MI), the transgenic mice exhibited decreased cardiomyocyte apoptosis, improved cardiac function and reduced scar size post-MI compared to their wild-type littermates. Interestingly, the protective effects observed in our transgenic mice were smaller than those from earlier reported approaches as well as our parallelly performed non-genetic approach, raising the possibility that non-genetic approaches of introducing miR-24 might have been mediated via other cell types than cardiomyocytes, leading to a more dramatic phenotype. In conclusion, our study for the first time directly tests the cardiomyocyte-specific role of miR-24 in the adult heart, and may provide insight to strategy design when considering miRNA-based therapies for cardiovascular diseases.
    Journal of Cellular and Molecular Medicine 10/2014; DOI:10.1111/jcmm.12393 · 3.70 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital heart disease (CHD) is the most common form of congenital human birth anomalies and a leading cause of perinatal and infant mortality. Some studies including our published genome-wide association study (GWAS) of CHD have indicated that genetic variants may contribute to the risk of CHD. Recently, Cordell et al. published a GWAS of multiple CHD phenotypes in European Caucasians and identified 3 susceptibility loci (rs870142, rs16835979 and rs6824295) for ostium secundum atrial septal defect (ASD) at chromosome 4p16. However, whether these loci at 4p16 confer the predisposition to CHD in Chinese population is unclear. In the current study, we first analyzed the associations between these 3 single nucleotide polymorphisms (SNPs) at 4p16 and CHD risk by using our existing genome-wide scan data and found all of the 3 SNPs showed significant associations with ASD in the same direction as that observed in Cordell's study, but not with other subtypes- ventricular septal defect (VSD) and ASD combined VSD. As these 3 SNPs were in high linkage disequilibrium (LD) in Chinese population, we selected one SNP with the lowest P value in our GWAS scan (rs16835979) to perform a replication study with additional 1,709 CHD cases with multiple phenotypes and 1,962 controls. The significant association was also observed only within the ASD subgroup, which was heterogeneous from other disease groups. In combined GWAS and replication samples, the minor allele of rs16835979 remained significant association with the risk of ASD (OR = 1.22, 95% CI = 1.08-1.38, P = 0.001). Our findings suggest that susceptibility loci of ASD identified from Cordell's European GWAS are generalizable to Chinese population, and such investigation may provide new insights into the roles of genetic variants in the etiology of different CHD phenotypes.
    PLoS ONE 09/2014; 9(9):e107411. DOI:10.1371/journal.pone.0107411 · 3.53 Impact Factor

Full-text (2 Sources)

Download
120 Downloads
Available from
May 27, 2014