Increased expression of CYR61 CCN1; identified in peritoneal metastases from human pancreatic cancer

Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA.
Journal of the American College of Surgeons (Impact Factor: 5.12). 04/2005; 200(3):371-7. DOI: 10.1016/j.jamcollsurg.2004.10.005
Source: PubMed


Identification of extracellular matrix proteins (ECM) associated with tumor cell metastasis may generate targets for future therapy against pancreatic cancer metastases. We hypothesized that comparison of ECM-associated gene expression in primary and metastatic pancreatic tumors would identify ECM proteins associated with pancreatic metastasis.
A clinically relevant model of pancreatic cancer was used to generate RNA from primary and metastatic tumors; it was evaluated by microarray analysis with subsequent cluster analysis. Target genes (Cyr61 and integrins alpha(v) and beta(3)) identified by microarray analysis were confirmed by reverse transcription polymerase chain reaction and immunohistochemistry analysis.
Peritoneal metastases at sites distant from the primary tumor were present in all animals bearing orthotopic tumors. High-density microarray comparison of gene expression in metastases versus primary pancreatic tumors identified a greater than twofold increase in the expression of Cyr61, a secreted matricellular protein that binds to integrins. Reverse transcription polymerase chain reaction confirmed the microarray results, and immunohistochemistry analysis demonstrated increased Cyr61 protein and persistent alpha(v)beta(3) expression in peritioneal metastases. Additionally, immunohistochemistry demonstrated increased collocalization of Cyr61 and alpha(v) in metastases relative to primary tumor.
The ECM protein Cyr61 shows increased expression in metastatic lesions in a clinically relevant model of pancreatic adenocarcinoma. Protein analysis confirms the microarray results and collocalization of Cyr61, and alpha(v) suggests that interaction between Cyr61 and alpha(v)beta(3) promotes formation of peritoneal metastases.

45 Reads
  • Source
    • "BioMed Research International integrins and neuropilin-1 are expressed on pancreatic cancer cells, including the panc-1 cell line [23] [24] [25] [26] [27] [28] [29]. In addition, í µí»¼ví µí»½3 integrin can be targeted by peptides with a short amino acid sequence containing Arg-Gly-Asp (RGD) [3, 22, 30–32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The iRGD peptide loaded with iron oxide nanoparticles for tumor targeting and tissue penetration was developed for targeted tumor therapy and ultrasensitive MR imaging. Binding of iRGD, a tumor homing peptide, is mediated by integrins, which are widely expressed on the surface of cells. Several types of small molecular drugs and nanoparticles can be transfected into cells with the help of iRGD peptide. Thus, we postulate that SPIO nanoparticles, which have good biocompatibility, can also be transfected into cells using iRGD. Despite the many kinds of cell labeling studies that have been performed with SPIO nanoparticles and RGD peptide or its analogues, only a few have applied SPIO nanoparticles with iRGD peptide in pancreatic cancer cells. This paper reports our preliminary findings regarding the effect of iRGD peptide (CRGDK/RGPD/EC) combined with SPIO on the labeling of pancreatic cancer cells. The results suggest that SPIO with iRGD peptide can enhance the positive labeling rate of cells and the uptake of SPIO. Optimal functionalization was achieved with the appropriate concentration or concentration range of SPIO and iRGD peptide. This study describes a simple and economical protocol to label panc-1 cells using SPIO in combination with iRGD peptide and may provide a useful method to improve the sensitivity of pancreatic cancer imaging.
    BioMed Research International 05/2014; 2014:852352. DOI:10.1155/2014/852352 · 1.58 Impact Factor
  • Source
    • "Among the various CCN proteins, a majority of studies have been conducted on Cyr61 or CCN1 with reference to cancer. Cyr61 is expressed by all types of vascular cells, participating in such diverse cellular processes as adhesion, migration, proliferation, and survival [2,3]. Notably, an important role for Cyr61 in the processes of angiogenesis and vascularization is being seen. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cysteine-rich 61 (Cyr61), a member of the CCN protein family, possesses diverse functionality in cellular processes such as adhesion, migration, proliferation, and survival. Cyr61 can also function as an oncogene or a tumour suppressor, depending on the origin of the cancer. Only a few studies have reported Cyr61 expression in colorectal cancer. In this study, we assessed the Cyr61 expression in 251 colorectal cancers with clinical follow up. We examined Cyr61 expression in 6 colorectal cancer cell lines (HT29, Colo205, Lovo, HCT116, SW480, SW620) and 20 sets of paired normal and colorectal cancer tissues by western blot. To validate the association of Cyr61 expression with clinicopathological parameters, we assessed Cyr61 expression using tissue microarray analysis of primary colorectal cancer by immunohistochemical analysis. We verified that all of the cancer cell lines expressed Cyr61; 2 cell lines (HT29 and Colo205) demonstrated Cyr61 expression to a slight extent, while 4 cell lines (Lovo, HCT116, SW480, SW620) demonstrated greater Cyr61 expression than HT29 and Colo205 cell lines. Among the 20 cases of paired normal and tumour tissues, greater Cyr61 expression was observed in 16 (80%) tumour tissues than in normal tissues. Furthermore, 157 out of 251 cases (62.5%) of colorectal cancer examined in this study displayed strong Cyr61 expression. Cyr61 expression was found to be associated with pN (p = 0.018). Moreover, Cyr61 expression was associated with statistically significant cancer-specific mortality (p = 0.029). The duration of survival was significantly lesser in patients with Cyr61 high expression than in patients with Cyr61 low expression (p = 0.001). These results suggest that Cyr61 expression plays several important roles in carcinogenesis and may also be a good prognostic marker for colorectal cancer. Our data confirmed that Cyr61 was expressed in colorectal cancers and the expression was correlated with worse prognosis of colorectal cancers.
    BMC Cancer 03/2014; 14(1):164. DOI:10.1186/1471-2407-14-164 · 3.36 Impact Factor
  • Source
    • "CYR61 regulates many cellular functions, including proliferation, migration, angiogenesis, differentiation, adhesion, survival, and apoptosis [10,11,12,13]. It has been well established that aberrant CYR61 expression and signaling can lead to tumorigenesis [14,15,16,17,18]. In fact, the expression of CYR61 has been found to be elevated in many cancers including, breast, colon, pancreatic, melanomas, and gliomas [9,14,19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme is characterized by rapid proliferation, aggressive metastatic potential, and resistance to radio- and chemotherapy. The matricellular protein CYR61 regulates cellular proliferation and migration and is highly expressed in Glioblastomas. MicroRNAs are 22-nucleotides long RNAs that regulate gene expression post-transcriptionally. Here, we utilized the LN229 glioblastoma cell line and found that CYR61 is a target of miR-136, miR-155, and miR-634. Over-expression of miR-136 and miR-634 miRNAs negatively affected proliferation, but not migration, while expression of miR-155 reduced migration but did not affect the proliferation of LN229 cells. Investigation of the molecular mechanisms affected by expression of miR-634 revealed an increased phosphorylation of p70S6 kinase, suggesting an induction of the mammalian target of rapamycin (mTOR) complex 1 pathway. Additionally, in miR-634 overexpressing cells, TSC2, a negative regulator of mTOR signaling, was found to be decreased. Altogether, our study provides insights on the differential roles of miRs-136, -155, and -634 in regulating glioblastoma cell growth and migration, and how microRNAs could be manipulated to decrease the aggressiveness and metastatic potential of tumor cells.
    Genes 03/2013; 4(1):46-64. DOI:10.3390/genes4010046 · 1.15 Impact Factor
Show more

Similar Publications