A Phase I trial of prolonged administration of lovastatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck or of the cervix.

Departments of Medical Oncology, Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, 5-218, 610 University Avenue, Toronto, Ont., Canada M5G 2M9.
European Journal of Cancer (Impact Factor: 4.82). 04/2005; 41(4):523-30. DOI: 10.1016/j.ejca.2004.12.013
Source: PubMed

ABSTRACT Squamous cell carcinomas of the head and neck (HNSCC) and of the cervix (CC) are particularly sensitive to the apoptotic effects of lovastatin in vitro. In this Phase I study, the safety and maximum related dose (MTD) of lovastatin was evaluated in these specific clinical settings. This was a Phase I open-label study to determine the recommended Phase II dose (RPTD) of lovastatin in advanced HNSCC or CC. This study involved a dose and duration escalation of lovastatin starting at 5/mg/kg/day x 2 weeks, every 21 days, until the MTD was reached. Plasma samples were collected for pharmacokinetic analysis. All 26 patients enrolled were evaluable. Dose-limiting toxicity (DLT) consisting of reversible muscle toxicity was seen at 10 mg/kg/day x 14 days. Toxicity may be related to relative renal insufficiency. The MTD was determined to be 7.5 mg/kg/day x 21 days, every 28 days. The low lipid levels experienced on study did not translate into adverse events. Biologically relevant plasma lovastatin levels were obtained. No objective responses were seen but the median survival of patients on study was 7.5 months (mean 9.2 +/- 1.5 months). Stable disease (SD) for more than 3 months was seen in 23% of patients. One patient achieved SD and clinical benefit for 14 months on study and a further 23 months off treatment. The disease stabilisation rate of 23% seen in these end-stage patients is encouraging. We conclude that the administration of lovastatin at 7.5 mg/kg/day for 21 consecutive days on a 28-day schedule is well tolerated in patients with good renal function and warrants further clinical evaluation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), which is a rate-limiting enzyme in the mevalonate pathway. The pleiotropic effects of statins may be mediated by the inhibition of downstream products such as small GTP-binding proteins, Rho, Ras and Rac whose localization and function are dependent on isoprenylation. Preclinical studies of statins in different cancer cell lines and animal models showed antiproliferative, pro‑apoptotic and anti-invasive effects. Notably, statins showed targeted action in cancerous cell lines compared to normal cells. Previous studies have also shown the synergistic effects of statins with chemotherapeutic agents and radiotherapy. This effect of statins was also observed in chemotherapeutic-resistant tumors. Statins were reported to sensitize the cells to radiation by arresting them in the late G1 phase of the cell cycle. Similarly, population-based studies also demonstrated a chemopreventive and survival benefit of statins in various types of cancers. However, this benefit has yet to be proven in clinical trials. The inter-individual variation in response to statins may be contributed to many genetic and non-genetic factors, including single-nucleotide polymorphisms in HMGCR gene and the overexpression of heterogeneous nuclear ribonucleoprotein A1, which was reported to reduce HMGCR enzyme activity. However, more studies with large phase III randomized controlled trials in cancer patients should be conducted to establish the effect of statins in cancer prevention and treatment.
    Oncology Reports 03/2015; 33(3):1019-1039. DOI:10.3892/or.2015.3741 · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Targeting the epidermal growth factor receptor (EGFR), with inhibitors such as erlotinib, represents a promising therapeutic option in advanced Head and Neck Squamous Cell Carcinomas (HNSCC). However, they lack significant efficacy as single agents. Recently, we identified the ability of statins to induce synergistic cytotoxicity in HNSCC cells through targeting the activation and trafficking of the EGFR. However in a Phase I trial of rosuvastatin and erlotinib, statin induced muscle pathology limited the usefulness of this approach. To overcome these toxicity limitations, we sought to uncover other potential combinations employing a 1200 compound screen of approved FDA drugs. We identified monensin, a coccidial antibiotic, as synergistically enhancing the cytotoxicity of erlotinib in two cell line models of HNSCC, SCC9 and SCC25. Monensin treatment mimicked the inhibitory effects of statins on EGFR activation and downstream signalling. RNA-seq analysis of monensin treated SCC25 cells demonstrated a wide array of cholesterol and lipid synthesis genes up regulated by this treatment similar to statin treatment. However, this pattern was not recapitulated in SCC9 cells as monensin specifically induced the expression of Activation of Transcription Factor (ATF) 3 a key regulator of statin-induced apoptosis. This differential response was also demonstrated in monensin treated ex-vivo surgical tissues where HMG-CoA reductase expression and ATF3 were either not induced, induced singly or both induced together in a cohort of 10 patient samples including 4 HNSCC. These results suggest the potential clinical utility of combining monensin with erlotinib in HNSCC patients.
    Molecular Cancer Therapeutics 09/2014; 13(11). DOI:10.1158/1535-7163.MCT-13-1086 · 6.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a recent study, we demonstrated the ability of lovastatin, a potent inhibitor of mevalonate synthesis, to inhibit the function of the epidermal growth factor receptor (EGFR). Lovastatin attenuated ligand-induced receptor activation and downstream signaling through the PI3K/AKT pathway. Combining lovastatin with gefitinib, a potent EGFR inhibitor, induced synergistic cytotoxicity in a variety of tumor derived cell lines. The vascular endothelial growth factor receptor (VEGFR) and EGFR share similar activation, internalization and downstream signaling characteristics. The VEGFRs, particularly VEGFR-2 (KDR, Flt-1), play important roles in regulating tumor angiogenesis by promoting endothelial cell proliferation, survival and migration. Certain tumors, such as malignant mesothelioma (MM), also express both the VEGF ligand and VEGFRs that act in an autocrine loop to directly stimulate tumor cell growth and survival. In this study, we have shown that lovastatin inhibits ligand-induced VEGFR-2 activation through inhibition of receptor internalization and also inhibits VEGF activation of AKT in human umbilical vein endothelial cells (HUVEC) and H28 MM cells employing immunofluorescence and Western blotting. Combinations of lovastatin and a VEGFR-2 inhibitor showed more robust AKT inhibition than either agent alone in the H28 MM cell line. Furthermore, combining 5 µM lovastatin treatment, a therapeutically relevant dose, with two different VEGFR-2 inhibitors in HUVEC and the H28 and H2052 mesothelioma derived cell lines demonstrated synergistic cytotoxicity as demonstrated by MTT cell viability and flow cytometric analyses. These results highlight a novel mechanism by which lovastatin can regulate VEGFR-2 function and a potential therapeutic approach for MM through combining statins with VEGFR-2 inhibitors.
    PLoS ONE 09/2010; 5(9):e12563. DOI:10.1371/journal.pone.0012563 · 3.53 Impact Factor