Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury.

Department of Neurological Surgery, University of California at San Francisco 94121, USA.
Journal of Cerebral Blood Flow & Metabolism (Impact Factor: 5.34). 08/2005; 25(7):899-910. DOI: 10.1038/sj.jcbfm.9600080
Source: PubMed

ABSTRACT Apoptosis is implicated in neonatal hypoxic/ischemic (H/I) brain injury among various forms of cell death. Here we investigate whether overexpression of heat shock protein (Hsp) 70, an antiapoptotic protein, protects the neonatal brain from H/I injury and the pathways involved in the protection. Postnatal day 7 (P7) transgenic mice overexpressing rat Hsp70 (Tg) and their wild-type littermates (Wt) underwent unilateral common carotid artery ligation followed by 30 mins exposure to 8% O(2). Significant neuroprotection was observed in Tg versus Wt mice on both P12 and P21, correlating with a high level of constitutive but not inducible Hsp70 in the Tg. More prominent injury was observed in Wt and Tg mice on P21, suggesting its continuous evolution after P12. Western blot analysis showed that translocation of cytochrome c, but not the second mitochondria-derived activator of caspase (Smac)/DIABLO and apoptosis-inducing factor (AIF), from mitochondria into cytosol was significantly reduced in Tg 24 h after H/I compared with Wt mice. Coimmunoprecipitation detected more Hsp70 bound to AIF in Tg than Wt mice 24 h after H/I, inversely correlating with the amount of nuclear, but not cytosolic, AIF translocation. Our results suggest that interaction between Hsp70 and AIF might have reduced downstream events leading to cell death, including the reduction of nuclear AIF translocation in the neonatal brains of Hsp70 Tg mice after H/I.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The incidence of perinatal stroke is high, similar to that in the elderly, and produces a significant morbidity and severe long-term neurologic and cognitive deficits, including cerebral palsy, epilepsy, neuropsychological impairments, and behavioral disorders. Emerging clinical data and data from experimental models of cerebral ischemia in neonatal rodents have shown that the pathophysiology of perinatal brain damage is multifactorial. These studies have revealed that, far from just being a smaller version of the adult brain, the neonatal brain is unique with a very particular and age-dependent responsiveness to hypoxia-ischemia and focal arterial stroke. In this review, we discuss fundamental clinical aspects of perinatal stroke as well as some of the most recent and relevant findings regarding the susceptibility of specific brain cell populations to injury, the dynamics and the mechanisms of neuronal cell death in injured neonates, the responses of neonatal blood-brain barrier to stroke in relation to systemic and local inflammation, and the long-term effects of stroke on angiogenesis and neurogenesis. Finally, we address translational strategies currently being considered for neonatal stroke as well as treatments that might effectively enhance repair later after injury.Journal of Cerebral Blood Flow & Metabolism advance online publication, 26 March 2014; doi:10.1038/jcbfm.2014.41.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 03/2014; · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: By the current study, we tried to find out the interactive mechanisms enrolled by Hsp70 and Hsp90 following the 6-hydroxydopamine (6-OHDA)-induced oxidative stress. Of heat shock protein (Hsp) family, we have previously evaluated the effects of Hsp90 gene silencing on in vitro model of Parkinson's disease and its influence on controlling the mechanisms of cell survival. Here, we extended our study to Hsp70 silencing short interfering RNA (siRNA) oligonucleotides, transfected into Pheochromocytoma (PC12) cells with/without exposure to 6-OHDA stress. In order to determine the probable effects of Hsp70 silencing on apoptotic factors, we assessed Bcl2/Bax ratio, nuclear level of PARP, and cleavage of caspase-3 under 6-OHDA stress condition. The results showed deteriorated effect of Hsp70 siRNA on apoptosis in cells exposed to only 6-OHDA. This is, at least in part, in consequence of upregulation of Hsp90, both at messenger RNA (mRNA) and protein levels. These data highlight the critical role of Hsp70 for cell survival under 6-OHDA stress condition. It could be a suggestive issue for supervision of caspase cascades by survival roles of Hsps as Hsp70 silencing resulted in apoptosis phenomenon. Convergence of Hsp70 anti-apoptotic and 6-OHDA pro-apoptotic pathways may explain intensified apoptosis following Hsp70 silencing. In addition, nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor, has been previously studied in detoxification of oxidative stress. For this issue, we tried to elucidate Hsp70 silencing impact on Nrf2, which has been shown to regulate the transcription of Hsp70, unspecifically. Besides, our investigations revealed that Hsp70 siRNA did not affect the level of Nrf2 during 6-OHDA exposure. But, it is still a dealing question and other investigations are needed to have a comprehensive perception of Hsp family signaling functions.
    Journal of Molecular Neuroscience 04/2014; · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock proteins (HSPs) play a role in the homeostasis, apoptosis regulation and the maintenance of the various other physiological processes. Aging is accompanied by a decrease in the resistance to environmental stress, while mitochondria are primary targets in the process of aging, their expression decreasing with age. Mitochondrion also plays a significant role in the process of spermatogenesis. HSPs have been shown to be involved in apoptosis with some of acting as apoptotic inhibitors and are involved in cytoprotection. In this review we discuss the roles of Hsp 27, 60, 70, and 90 in aging and male infertility and have concluded that these particular HSPs can be used as a molecular markers for mitochondrially-mediated apoptosis, aging and male infertility.
    world journal of men's health. 12/2014; 32(3)(31st):2287-4208.

Full-text (2 Sources)

Available from
May 21, 2014