Australopithecus anamensis: a finite-element approach to studying the functional adaptations of extinct hominins.

Palaeontology Research Group, Department of Human Anatomy and Cell Biology, University of Liverpool, Liverpool L69 3GE, UK.
The Anatomical Record Part A Discoveries in Molecular Cellular and Evolutionary Biology 05/2005; 283(2):310-8. DOI: 10.1002/ar.a.20175
Source: PubMed

ABSTRACT Australopithecus anamensis is the stem species of all later hominins and exhibits the suite of characters traditionally associated with hominins, i.e., bipedal locomotion when on the ground, canine reduction, and thick-enameled teeth. The functional consequences of its thick enamel are, however, unclear. Without appropriate structural reinforcement, these thick-enameled teeth may be prone to failure. This article investigates the mechanical behavior of A. anamensis enamel and represents the first in a series that will attempt to determine the functional adaptations of hominin teeth. First, the microstructural arrangement of enamel prisms in A. anamensis teeth was reconstructed using recently developed software and was compared with that of extant hominoids. Second, a finite-element model of a block of enamel containing one cycle of prism deviation was reconstructed for Homo, Pan, Gorilla, and A. anamensis and the behavior of these tissues under compressive stress was determined. Despite similarities in enamel microstructure between A. anamensis and the African great apes, the structural arrangement of prismatic enamel in A. anamensis appears to be more effective in load dissipation under these compressive loads. The findings may imply that this hominin species was well adapted to puncture crushing and are in some respects contrary to expectations based on macromorphology of teeth. Taking together, information obtained from both finite-element analyses and dental macroanatomy leads us to suggest that A. anamensis was probably adapted for habitually consuming a hard-tough diet. However, additional tests are needed to understand the functional adaptations of A. anamensis teeth fully.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Renewed fieldwork from 2003 through 2008 at the Australopithecus anamensis type-site of Kanapoi, Kenya, yielded nine new fossils attributable to this species. These fossils all date to between 4.195 and 4.108 million years ago. Most were recovered from the lower fluvial sequence at the site, with one from the lacustrine sequence deltaic sands that overlie the lower fluvial deposits but are still below the Kanapoi Tuff. The new specimens include a partial edentulous mandible, partial maxillary dentition, two partial mandibular dentitions, and five isolated teeth. The new Kanapoi hominin fossils increase the sample known from the earliest Australopithecus, and provide new insights into morphology within this taxon. They support the distinctiveness of the early A. anamensis fossils relative to earlier hominins and to the later Australopithecus afarensis. The new fossils do not appreciably extend the range of observed variation in A. anamensis from Kanapoi, with the exception of some slightly larger molars, and a canine tooth root that is the largest in the hominin fossil record. All of the Kanapoi hominins share a distinctive morphology of the canine-premolar complex, typical early hominin low canine crowns but with mesiodistally longer honing teeth than seen in A. afarensis, and large, probably dimorphic, canine tooth roots. The new Kanapoi specimens support the observation that canine crown height, morphology, root size and dimorphism were not altered from a primitive ape-like condition as part of a single event in human evolution, and that there may have been an adaptive difference in canine function between A. anamensis and A. afarensis.
    Journal of Human Evolution 08/2013; · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study considers the turnover in hominins, together with carnivorans and other primates, at 3.5 Ma against an environmental backdrop. Communalities are identified between evolving guilds that may directly inform hominin evolution. These are the evolution of (a) dietary generalists and (b) evidence for sociality in carnivores, baboons and hominins. Sociality and behavioural flexibility are regarded advantageous for the procurement of resources while, at the same time, reducing intraspecific competition; in primates it may initially also have served to reduce predation risk. Behavioural flexibility explains the evolutionary success of Panthera leo, Papio and Homo. Viewed within a wider palaeoecological and environmental context, it is possible that sociality in hominins, including allocare, were triggered by abiotic changes at about 3.5 Ma. If confirmed in future studies, this would mark the beginning of hominin life history evolution.
    Quaternary Science Reviews 01/2013; · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hominins are generally considered eclectic omnivores like baboons, but recent isotope studies call into question the generalist status of some hominins. Paranthropus boisei and Australopithecus bahrelghazali derived 75%-80% of their tissues' δ(13)C from C4 sources, i.e. mainly low-quality foods like grasses and sedges. Here I consider the energetics of P. boisei and the nutritional value of C4 foods, taking into account scaling issues between the volume of food consumed and body mass, and P. boisei's food preference as inferred from dento-cranial morphology. Underlying the models are empirical data for Papio cynocephalus dietary ecology. Paranthropus boisei only needed to spend some 37%-42% of its daily feeding time (conservative estimate) on C4 sources to meet 80% of its daily requirements of calories, and all its requirements for protein. The energetic requirements of 2-4 times the basal metabolic rate (BMR) common to mammals could therefore have been met within a 6-hour feeding/foraging day. The findings highlight the high nutritional yield of many C4 foods eaten by baboons (and presumably hominins), explain the evolutionary success of P. boisei, and indicate that P. boisei was probably a generalist like other hominins. The diet proposed is consistent with the species' derived morphology and unique microwear textures. Finally, the results highlight the importance of baboon/hominin hand in food acquisition and preparation.
    PLoS ONE 01/2014; 9(1):e84942. · 3.73 Impact Factor


Available from
May 20, 2014
Available from