Article

Epitope mapping and biological function analysis of antibodies produced by immunization of mice with an inactivated Chinese isolate of severe acute respiratory syndrome-associated coronavirus (SARS-CoV).

Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building, Worcester, MA 01605-2397, USA.
Virology (Impact Factor: 3.28). 04/2005; 334(1):134-43. DOI: 10.1016/j.virol.2005.01.035
Source: PubMed

ABSTRACT Inactivated severe acute respiratory syndrome-associated coronavirus (SARS-CoV) has been tested as a candidate vaccine against the re-emergence of SARS. In order to understand the efficacy and safety of this approach, it is important to know the antibody specificities generated with inactivated SARS-CoV. In the current study, a panel of twelve monoclonal antibodies (mAbs) was established by immunizing Balb/c mice with the inactivated BJ01 strain of SARS-CoV isolated from the lung tissue of a SARS-infected Chinese patient. These mAbs could recognize SARS-CoV-infected cells by immunofluorescence analysis (IFA). Seven of them were mapped to the specific segments of recombinant spike (S) protein: six on S1 subunit (aa 12-798) and one on S2 subunit (aa 797-1192). High neutralizing titers against SARS-CoV were detected with two mAbs (1A5 and 2C5) targeting at a subdomain of S protein (aa 310-535), consistent with the previous report that this segment of S protein contains the major neutralizing domain. Some of these S-specific mAbs were able to recognize cleaved products of S protein in SARS-CoV-infected Vero E6 cells. None of the remaining five mAbs could recognize either of the recombinant S, N, M, or E antigens by ELISA. This study demonstrated that the inactivated SARS-CoV was able to preserve the immunogenicity of S protein including its major neutralizing domain. The relative ease with which these mAbs were generated against SARS-CoV virions further supports that subunit vaccination with S constructs may also be able to protect animals and perhaps humans. It is somewhat unexpected that no N-specific mAbs were identified albeit anti-N IgG was easily identified in SARS-CoV-infected patients. The availability of this panel of mAbs also provided potentially useful agents with applications in therapy, diagnosis, and basic research of SARS-CoV.

0 Followers
 · 
56 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection causes lung failure characterized by atypical pneumonia. We previously showed that antibodies against SARS-CoV spike domain 2 (S2) in the patient sera can cross-react with human lung epithelial cells; however, the autoantigen is not yet identified. In this study, we performed proteomic studies and identified several candidate autoantigens recognized by SARS patient sera in human lung type II epithelial cell A549. Among the candidate proteins, annexin A2, which was identified by mass spectrometry analysis and had the highest score by Mascot data search, was further characterized and investigated for its role as an autoantigen. By confocal microscopic observation, SARS patient sera and anti-S2 antibodies were co-localized on A549 cells and both of them were co-localized with anti-annexin A2 antibodies. Anti-annexin A2 antibodies bound to purified S2 proteins, and anti-S2 bound to immunoprecipitated annexin A2 from A549 cell lysate in a dose-dependent manner. Furthermore, an increased surface expression and raft-structure distribution of annexin A2 was present in A549 cells after stimulation with SARS-induced cytokines interleukin-6 and interferon-gamma. Cytokine stimulation increased the binding capability of anti-S2 antibodies to human lung epithelial cells. Together, the upregulated expression of annexin A2 by SARS-associated cytokines and the cross-reactivity of anti-SARS-CoV S2 antibodies to annexin A2 may have implications in SARS disease pathogenesis.
    Molecular Immunology 12/2009; 47(5):1000-9. DOI:10.1016/j.molimm.2009.11.019 · 3.00 Impact Factor
  • Source
    Recent Research in Infec tion and Immunity, 01/2005: chapter Molecular characterization of human coronavirus NL63: pages 25-48; Transworld Research Network., ISBN: 81-7895-182-7

Full-text (2 Sources)

Download
18 Downloads
Available from
Jun 1, 2014