Article

The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase.

Department of Biochemistry, 4-74 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
Molecular Cell (Impact Factor: 14.46). 04/2005; 17(5):657-70. DOI: 10.1016/j.molcel.2005.02.012
Source: PubMed

ABSTRACT Mammalian polynucleotide kinase (PNK) is a key component of both the base excision repair (BER) and nonhomologous end-joining (NHEJ) DNA repair pathways. PNK acts as a 5'-kinase/3'-phosphatase to create 5'-phosphate/3'-hydroxyl termini, which are a necessary prerequisite for ligation during repair. PNK is recruited to repair complexes through interactions between its N-terminal FHA domain and phosphorylated components of either pathway. Here, we describe the crystal structure of intact mammalian PNK and a structure of the PNK FHA bound to a cognate phosphopeptide. The kinase domain has a broad substrate binding pocket, which preferentially recognizes double-stranded substrates with recessed 5' termini. In contrast, the phosphatase domain efficiently dephosphorylates single-stranded 3'-phospho termini as well as double-stranded substrates. The FHA domain is linked to the kinase/phosphatase catalytic domain by a flexible tether, and it exhibits a mode of target selection based on electrostatic complementarity between the binding surface and the phosphothreonine peptide.

0 Bookmarks
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA phosphorylation, catalyzed by polynucleotide kinase (PNK), plays significant regulatory roles in many biological events. Here, a novel fluorescent nanosensor based on phosphorylation-specific exonuclease reaction and efficient fluorescence quenching of single-stranded DNA (ssDNA) by a WS2 nanosheet has been developed for monitoring the activity of PNK using T4 polynucleotide kinase (T4 PNK) as a model target. The fluorescent dye-labeled double-stranded DNA (dsDNA) remains highly fluorescent when mixed with WS2 nanosheets because of the weak adsorption of dsDNA on WS2 nanosheets. While dsDNA is phosphorylated by T4 PNK, it can be specifically degraded by λ exonuclease, producing ssDNA strongly adsorbed on WS2 nanosheets with greatly quenched fluorescence. Because of the high quenching efficiency of WS2 nanosheets, the developed platform presents excellent performance with a wide linear range, low detection limit and high signal-to-background ratio. Additionally, inhibition effects from adenosine diphosphate, ammonium sulfate, and sodium chloride have been investigated. The method may provide a universal platform for PNK activity monitoring and inhibitor screening in drug discovery and clinic diagnostics.
    Nanoscale 05/2014; · 6.74 Impact Factor
  • Sensors and Actuators B Chemical 10/2014; 202:588-593. · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The four mammalian Pellinos (Pellinos 1, 2, 3a, and 3b) are E3 ubiquitin ligases that are emerging as critical mediators for a variety of immune signaling pathways, including those activated by Toll-like receptors, the T-cell receptor, and NOD2. It is becoming increasingly clear that each Pellino has a distinct role in facilitating immune receptor signaling. However, the underlying mechanisms by which these highly homologous proteins act selectively in these signaling pathways are not clear. In this study, we investigate whether Pellino substrate recognition contributes to the divergent functions of Pellinos. Substrate recognition of each Pellino is mediated by its noncanonical forkhead-associated (FHA) domain, a well-characterized phosphothreonine-binding module. Pellino FHA domains share very high sequence identity, so a molecular basis for differences in substrate recognition is not immediately apparent. To explore Pellino substrate specificity, we first identify a high-affinity Pellino2 FHA domain-binding motif in the Pellino substrate, interleukin-1 receptor-associated kinase 1 (IRAK1). Analysis of binding of the different Pellinos to a panel of phosphothreonine-containing peptides derived from the IRAK1-binding motif reveals that each Pellino has a distinct phosphothreonine peptide binding preference. We observe a similar binding specificity in the interaction of Pellinos with a number of known Pellino substrates. These results argue that the nonredundant roles that Pellinos play in immune signaling are in part due to their divergent substrate specificities. This new insight into Pellino substrate recognition could be exploited for pharmacological advantage in treating inflammatory diseases that have been linked to the aberrant regulation of Pellinos.
    Biochemistry 07/2014; · 3.38 Impact Factor

Full-text (2 Sources)

Download
48 Downloads
Available from
May 20, 2014