Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition.

Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100 Israel.
Molecular Biology of the Cell (Impact Factor: 4.55). 06/2005; 16(5):2395-413. DOI: 10.1091/mbc.E04-11-0992
Source: PubMed

ABSTRACT Nucleolar segregation is observed under some physiological conditions of transcriptional arrest. This process can be mimicked by transcriptional arrest after actinomycin D treatment leading to the segregation of nucleolar components and the formation of unique structures termed nucleolar caps surrounding a central body. These nucleolar caps have been proposed to arise from the segregation of nucleolar components. We show that contrary to prevailing notion, a group of nucleoplasmic proteins, mostly RNA binding proteins, relocalized from the nucleoplasm to a specific nucleolar cap during transcriptional inhibition. For instance, an exclusively nucleoplasmic protein, the splicing factor PSF, localized to nucleolar caps under these conditions. This structure also contained pre-rRNA transcripts, but other caps contained either nucleolar proteins, PML, or Cajal body proteins and in addition nucleolar or Cajal body RNAs. In contrast to the capping of the nucleoplasmic components, nucleolar granular component proteins dispersed into the nucleoplasm, although at least two (p14/ARF and MRP RNA) were retained in the central body. The nucleolar caps are dynamic structures as determined using photobleaching and require energy for their formation. These findings demonstrate that the process of nucleolar segregation and capping involves energy-dependent repositioning of nuclear proteins and RNAs and emphasize the dynamic characteristics of nuclear domain formation in response to cellular stress.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The repair of spontaneous and induced DNA lesions is a multistep process. Depending on the type of injury, damaged DNA is recognized by many proteins specifically involved in distinct DNA repair pathways. We analyzed the DNA-damage response after ultraviolet A (UVA) and γ irradiation of mouse embryonic fibroblasts and focused on upstream binding factor 1 (UBF1), a key protein in the regulation of ribosomal gene transcription. We found that UBF1, but not nucleolar proteins RPA194, TCOF, or fibrillarin, was recruited to UVA-irradiated chromatin concurrently with an increase in heterochromatin protein 1β (HP1β) level. Moreover, Förster Resonance Energy Transfer (FRET) confirmed interaction between UBF1 and HP1β that was dependent on a functional chromo shadow domain of HP1β. Thus, overexpression of HP1β with a deleted chromo shadow domain had a dominant-negative effect on UBF1 recruitment to UVA-damaged chromatin. Transcription factor UBF1 also interacted directly with DNA inside the nucleolus but no interaction of UBF1 and DNA was confirmed outside the nucleolus, where UBF1 recruitment to DNA lesions appeared simultaneously with cyclobutane pyrimidine dimers; this occurrence was cell-cycle-independent. We propose that the simultaneous presence and interaction of UBF1 and HP1β at DNA lesions is activated by the presence of cyclobutane pyrimidine dimers and mediated by the chromo shadow domain of HP1β. This might have functional significance for nucleotide excision repair.
    Epigenetics & Chromatin 01/2014; 7(1):39. DOI:10.1186/1756-8935-7-39 · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein partitioning in aqueous two-phase systems (ATPS) is widely used as a convenient, inexpensive, and readily scaled-up separation technique. Protein partition behavior in ATPS is known to be readily manipulated by ionic composition. However, the available data on the effects of salts and buffer concentrations on protein partitioning are very limited. To fill this gap, partitioning of 15 proteins was examined in dextran-poly(ethylene glycol) ATPSs with different salt additives (Na2SO4, NaClO4, NaSCN, CsCl) in 0.11M sodium phosphate buffer, pH 7.4. This analysis reveals that there is a linear relationship between the logarithms of the protein partition coefficients determined in the presence of different salts. This relationship suggests that the protein response to ionic environment is determined by the protein structure and type and concentrations of the ions present. Analysis of the differences between protein structures (described in terms of proteins responses to different salts) and that of cytochrome c chosen as a reference showed that the peculiarities of the protein surface structure and B-factor used as a measure of the protein flexibility are the determining parameters. Our results provide better insight into the use of different salts in manipulating protein partitioning in aqueous two-phase systems. These data also demonstrate that the protein responses to different ionic environments are interrelated and are determined by the structural peculiarities of protein surface. It is suggested that changes in ionic microenvironment of proteins may regulate protein transport and behavior in biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.
    Journal of Chromatography A 02/2015; 1387. DOI:10.1016/j.chroma.2015.02.006 · 4.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Specialized regions of the plasma membrane dedicated to diverse cellular processes, such as vesicle exocytosis, extracellular matrix remodeling, and cell migration, share a few cytosolic scaffold proteins that associate to form large plasma membrane-associated platforms (PMAPs). PMAPs organize signaling events and trafficking of membranes and molecules at specific membrane domains. On the basis of the intrinsic disorder of the proteins constituting the core of these PMAPs and of the dynamics of these structures at the periphery of motile cells, we propose a working model for the assembly and turnover of these platforms. Copyright © 2015, American Association for the Advancement of Science.
    Science Signaling 8(367):re1. DOI:10.1126/scisignal.aaa3312 · 7.65 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014