Article

MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma

Universität Regensburg, Ratisbon, Bavaria, Germany
New England Journal of Medicine (Impact Factor: 54.42). 03/2005; 352(10):997-1003. DOI: 10.1056/NEJMoa043331
Source: PubMed

ABSTRACT Epigenetic silencing of the MGMT (O6-methylguanine-DNA methyltransferase) DNA-repair gene by promoter methylation compromises DNA repair and has been associated with longer survival in patients with glioblastoma who receive alkylating agents.
We tested the relationship between MGMT silencing in the tumor and the survival of patients who were enrolled in a randomized trial comparing radiotherapy alone with radiotherapy combined with concomitant and adjuvant treatment with temozolomide. The methylation status of the MGMT promoter was determined by methylation-specific polymerase-chain-reaction analysis.
The MGMT promoter was methylated in 45 percent of 206 assessable cases. Irrespective of treatment, MGMT promoter methylation was an independent favorable prognostic factor (P<0.001 by the log-rank test; hazard ratio, 0.45; 95 percent confidence interval, 0.32 to 0.61). Among patients whose tumor contained a methylated MGMT promoter, a survival benefit was observed in patients treated with temozolomide and radiotherapy; their median survival was 21.7 months (95 percent confidence interval, 17.4 to 30.4), as compared with 15.3 months (95 percent confidence interval, 13.0 to 20.9) among those who were assigned to only radiotherapy (P=0.007 by the log-rank test). In the absence of methylation of the MGMT promoter, there was a smaller and statistically insignificant difference in survival between the treatment groups.
Patients with glioblastoma containing a methylated MGMT promoter benefited from temozolomide, whereas those who did not have a methylated MGMT promoter did not have such a benefit.

2 Followers
 · 
193 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumors of brain tissue and meninges create a heterogeneous group with various biological behavior, therapy management and differing prognosis. Some of these do not require treatment, some can be cured by surgery and some are rapidly fatal despite treatment. Despite huge progress in tumor research, innovations in diagnostic tools and therapy, prognosis remains, in case of malignant tumor types, very serious. There has been an increased understanding of molecular abnormalities occurring in primary brain tumors. Genome-wide analyses of tumors have improved the knowledge in tumor biology. The aim of the research is to explain the oncogenesis features thus leading to the use of new therapeutic modalities in order to prolong survival rate of patients and at the same time providing satisfactory life quality. This article offers a short review of the basic genetic alterations present with some histological types of brain tumors.
    General Physiology and Biophysics 06/2014; 33(3). DOI:10.4149/gpb_2014007 · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiotherapy is an important component of anti-cancer treatment. However, not all cancer patients respond to radiotherapy, and with current knowledge clinicians are unable to predict which patients are at high risk of recurrence after radiotherapy. There is therefore an urgent need for biomarkers to guide clinical decision-making. Although the importance of epigenetic alterations is widely accepted, their application as biomarkers in radiotherapy has not been studied extensively. In addition, it has been suggested that radiotherapy itself introduces epigenetic alterations. As epigenetic alterations can potentially be reversed by drug treatment, they are interesting candidate targets for anticancer therapy or radiotherapy sensitizers. The application of demethylating drugs or histone deacetylase inhibitors to sensitize patients for radiotherapy has been studied in vitro, in vivo as well as in clinical trials with promising results. This review describes the current knowledge on epigenetics in radiotherapy.
    Radiotherapy and Oncology 05/2014; 111(2). DOI:10.1016/j.radonc.2014.05.001 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is one of the most common intracranial tumors encountered in adults. This tumor of very poor prognosis is associated with a median survival rate of approximately 14 months. One of the major issues to better understand the biology of these tumors and to optimize the therapy is to obtain the molecular structure of glioblastoma. MALDI molecular imaging enables location of molecules in tissues without labeling. However, molecular identification in situ is not an easy task. In this paper, we used MALDI imaging coupled to in source decay to characterize markers of this pathology. We provided MALDI molecular images up to 30 μm spatial resolution of mouse brain tissue sections. MALDI images showed the heterogeneity of the glioblastoma. In the various zones and at various development stages of the tumor, using our top down strategy, we identified several proteins. These proteins play key roles in tumorigenesis. A particular attention was given to the necrotic area with characterization of hemorrhage, one of the most important poor prognosis factors in glioblastoma. This article is protected by copyright. All rights reserved.
    Proteomics 05/2014; 14(10). DOI:10.1002/pmic.201300329 · 3.97 Impact Factor