Hsp70 chaperones: cellular functions and molecular mechanism.

Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
Cellular and Molecular Life Sciences CMLS (Impact Factor: 5.86). 04/2005; 62(6):670-84. DOI: 10.1007/s00018-004-4464-6
Source: PubMed

ABSTRACT Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The folding fate of a protein in vivo is determined by the interplay between a protein's folding energy landscape and the actions of the proteostasis network, including molecular chaperones and degradation enzymes. The mechanisms of individual components of the E. coli proteostasis network have been studied extensively, but much less is known about how they function as a system. We used an integrated experimental and computational approach to quantitatively analyze the folding outcomes (native folding versus aggregation versus degradation) of three test proteins biosynthesized in E. coli under a variety of conditions. Overexpression of the entire proteostasis network benefited all three test proteins, but the effect of upregulating individual chaperones or the major degradation enzyme, Lon, varied for proteins with different biophysical properties. In sum, the impact of the E. coli proteostasis network is a consequence of concerted action by the Hsp70 system (DnaK/DnaJ/GrpE), the Hsp60 system (GroEL/GroES), and Lon. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 04/2015; 275. DOI:10.1016/j.celrep.2015.03.018 · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease, the most common type of dementia, is a progressive brain disease that destroys cognitive function and eventually leads to death. In patients with Alzheimer's disease, beta amyloids and tau proteins form plaques/oligomers and oligomers/tangles that affect the ability of neurons to function properly. Heat shock protein 70 (HSP70) has the ability to prevent aggregation/oligomerization of beta amyloid/tau proteins, making it a potential drug target. To determine this potential, it is essential that we have appropriate in vitro and cell-based assays that help identify specific molecules that affect this aggregation or oligomerization through HSP70. Potential drug candidates could be identified through a series of assays, starting with ATPase assays, followed by aggregation assays with enzymes/proteins and cell-based systems. ATPase assays are effective in identification of ATPase modulators but do not determine the effect of the molecule on beta amyloid and tau proteins. Molecules identified through ATPase assays are validated by thioflavin T aggregation assays in the presence of HSP70. These assays help uncover if a molecule affects beta amyloid and tau through HSP70, but are limited by their in vitro nature. Potential drug candidates are further validated through cell-based assays using mammalian, yeast, or bacterial cultures. However, while these assays are able to determine the effect of a specific molecule on beta amyloid and tau, they fail to determine whether the action is HSP70-dependent. The creation of a novel, direct assay that can demonstrate the antiaggregation effect of a molecule as well as its action through HSP70 would reduce the number of false-positive drug candidates and be more cost-effective and time-effective.
    Drug Design, Development and Therapy 01/2015; 9:321. DOI:10.2147/DDDT.S72165 · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The application of cytostatic drugs targeting the high proliferation rates of cancer cells is currently the most commonly used treatment option in cancer chemotherapy. However, severe side effects and resistance mechanisms may occur as a result of such treatment, possibly limiting the therapeutic efficacy of these agents. In recent years, several therapeutic strategies have been developed that aim at targeting not the genomic integrity and replication machinery of cancer cells but instead their protein homeostasis. During malignant transformation, the cancer cell proteome develops vast aberrations in the expression of mutated proteins, oncoproteins, drug- and apoptosis-resistance proteins, etc. A complex network of protein quality-control mechanisms, including chaperoning by heat shock proteins (HSPs), not only is essential for maintaining the extravagant proteomic lifestyle of cancer cells but also represents an ideal cancer-specific target to be tackled. Furthermore, the high rate of protein synthesis and turnover in certain types of cancer cells can be specifically directed by interfering with the proteasomal and autophagosomal protein recycling and degradation machinery, as evidenced by the clinical application of proteasome inhibitors. Since proteins with loss of their native conformation are prone to unspecific aggregations and have proved to be detrimental to normal cellular function, specific induction of misfolded proteins by HSP inhibitors, proteasome inhibitors, hyperthermia, or inducers of endoplasmic reticulum stress represents a new method of cancer cell killing exploitable for therapeutic purposes. This review describes drugs - approved, repurposed, or under investigation - that can be used to accumulate misfolded proteins in cancer cells, and particularly focuses on the molecular aspects that lead to the cytotoxicity of misfolded proteins in cancer cells.
    Frontiers in Oncology 02/2015; 5:47. DOI:10.3389/fonc.2015.00047

Full-text (2 Sources)

Available from
Jun 1, 2014