Hsp70 chaperones: cellular functions and molecular mechanism.

Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
Cellular and Molecular Life Sciences CMLS (Impact Factor: 5.86). 04/2005; 62(6):670-84. DOI: 10.1007/s00018-004-4464-6
Source: PubMed

ABSTRACT Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein folding in cells is regulated by networks of chaperones, including the heat shock protein 70 (Hsp70) system, which consists of the Hsp40 cochaperone and a nucleotide exchange factor. Hsp40 mediates complex formation between Hsp70 and client proteins prior to interaction with Hsp90. We used mass spectrometry (MS) to monitor assemblies formed between eukaryotic Hsp90/Hsp70/Hsp40, Hop, p23, and a client protein, a fragment of the glucocorticoid receptor (GR). We found that Hsp40 promotes interactions between the client and Hsp70, and facilitates dimerization of monomeric Hsp70. This dimerization is antiparallel, stabilized by post-translational modifications (PTMs), and maintained in the stable heterohexameric client-loading complex Hsp902Hsp702HopGR identified here. Addition of p23 to this client-loading complex induces transfer of GR onto Hsp90 and leads to expulsion of Hop and Hsp70. Based on these results, we propose that Hsp70 antiparallel dimerization, stabilized by PTMs, positions the client for transfer from Hsp70 to Hsp90. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 04/2015; 11(5). DOI:10.1016/j.celrep.2015.03.063 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins are always at risk inside the cellular environment. Stress enhances the propensity of protein misfolding. Cell has evolved dynamic machinery called protein quality control (PQC) to minimize the risk of protein misfolding. The efficiency of PQC decreases during ageing; and the tendency of misfolded protein accumulation reduces the lifespan of an organism. Cell reduces the flux of misfolded proteins by refolding, degradation, or by se-questering into inclusions. Several evidences support the involvement of molecular chaperones that act as primary cellular defense. Among these, Hsp70 protein plays the prime function in maintaining PQC. Hsp70 has the unique ability to attune its function in response to the cellular need. From folding to degradation , solubilising aggregates, refolding of damaged proteins, and preventing harmful assemblage of protein inclusions, Hsp70 portrays a wide array of functions. These functions are attributed by the chaperone alone or along with its co-chaperones, Hsp40 (J-proteins), Hsp110 (NEF's) or Hsp104. Recent studies indicate Hsp70 as a degradation chaperone that efficiently facilitates in clearance of misfolded proteins. We discuss here the diverse roles of Heat Shock Protein 70 (Hsp70) chaperone in client fate determination. Moreover , we focus on the strategies cell undertake when major chaperone functions are compromised due to targeted inhibition or particular stress conditions. In the light of these findings, we discuss how chaperone modulation can evolve as an effective strategy to combat various neuropathies, ion channel misfolding diseases and selective parasitic maladies.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitin-proteasome system (UPS) proteins and proteolytic activity are localized in a recently identified cytoplasmic structure characterized by accumulation of barrel-like particles, which is known as the particulate cytoplasmic structure (PaCS). PaCSs have been detected in neoplastic, preneoplastic, chronically infected, and fetal cells, which produce high amounts of misfolded proteins to be degraded by the UPS. Chaperone molecules are crucial in the early stages of handling misfolded proteins; therefore, we searched for these molecules in PaCSs. Heat shock proteins (Hsp), Hsp90, Hsp70, Hsp40, and Bcl-2-associated athanogene (Bag)3 chaperones, although not Bag6, were selectively concentrated into PaCSs of several cell lines and ex vivo fetal or neoplastic cells. Present findings point to PaCSs as an integrated, active UPS center well equipped for metabolism of misfolded proteins, especially in cells under physiological (fetal development) or pathological (neoplasia or inflammation) stress.
    Histochemie 05/2015; DOI:10.1007/s00418-015-1327-1 · 2.93 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014