Article

Monitoring age-related susceptibility of young mice to oral Salmonella enterica serovar Typhimurium infection using an in vivo murine model.

Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
Pediatric Research (Impact Factor: 2.84). 08/2005; 58(1):153-8. DOI: 10.1203/01.PDR.0000157725.44213.C4
Source: PubMed

ABSTRACT Neonates and young children are acutely susceptible to infections by gastrointestinal bacterial pathogens, such as Salmonella enterica serovar Typhimurium (S. typhimurium). To reveal age-related differences in susceptibility to this pathogen, we used in vivo bioluminescence imaging (BLI) to monitor the progression of infection in neonatal (1-wk-old), suckling (2-wk-old), juvenile (4-wk-old), and adult (6-wk-old) BALB/c mice. Mice were orally infected with various doses of a bioluminescent-labeled wild-type or mutant S. typhimurium strain, and progression of infection was monitored by BLI for 2 wks. We found that neonatal and suckling mice were more susceptible to the wild-type strain at inoculum sizes 4 and 2 log(10)'s lower for neonatal and suckling mice, respectively, than those for adult mice. At the lower inocula, newborn mice showed disseminated systemic infection as indicated by the pattern of photon emission assessed by BLI, whereas no bioluminescent signals were detectable in adult mice. In addition, an orgA(-) mutant strain of S. typhimurium with reduced virulence in adult mice produced systemic infection in newborn, suckling, and juvenile mice. Furthermore, as low as 3 log(10) CFU could be detected by BLI in tissue. The present study demonstrates that susceptibility to S. typhimurium infection decreases with age. Also, we established that BLI can be used to monitor the progression of infection in mice. Thus, this model of age-related susceptibility to S. typhimurium using BLI can be used to advance our understanding of the mechanisms involved in newborn susceptibility to infection.

0 Bookmarks
 · 
58 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined the efficacy of enrofloxacin administered by 2 different routes in a mouse model of sepsis. Male CD1 mice were infected with a bioluminescent strain of enteropathogenic Escherichia coli and treated with enrofloxacin either by injection or in drinking water. Peak serum levels were evaluated by using HPLC. Mice were monitored for signs of clinical disease, and infections were monitored by using bioluminescence imaging. Serum levels of enrofloxacin and the active metabolite ciprofloxacin were greater in the group treated by injection than in controls or the groups treated by administration in drinking water. Survival of the group treated with enrofloxacin injection was greater than that of controls and groups treated with enrofloxacin in the drinking water. Bioluminescence in the group treated with enrofloxacin injection was less than that in the groups treated with oral administration at 12 h and in the groups treated orally and the control group at 16 h. According to these findings, we recommend the use of injectable enrofloxacin at 5 mg/kg SC for mice with systemic infections.
    Journal of the American Association for Laboratory Animal Science: JAALAS 01/2014; 53(4). · 0.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromosomal integration of expression modules for transgenes is an important aspect for the development of novel Salmonella vectors. Mini-Tn7 transposons have been used for the insertion of one such module into the chromosomal site attTn7, present only once in most Gram-negative bacteria. However, integration of multiple mini-Tn7 copies might be suitable for expression of appropriate amounts of antigen or combination of different modules. Here we demonstrate that integration of a 9.6 kb mini-Tn7 harbouring the luciferase luxCDABE (lux) occurs at the natural attTn7 site and simultaneously other locations of the Salmonella chromosome, which were engineered using λ-Red recombinase to contain one or two additional artificial attTn7 sites (a-attTn7). Multicopy integration even at closely spaced attTn7 sites was unexpected in light of the previously reported distance-dependent Tn7 target immunity. Integration of multiple copies of a mini-Tn7 containing a gfp cassette resulted in increasing green fluorescence of bacteria. Stable consecutive integration of two mini-Tn7 encoding lacZ and lux was achieved by initial transposition of lacZ-mini-Tn7, subsequent chromosomal insertion of a-attTn7 and a second round of transposition with lux-mini-Tn7. Mini-Tn7 thus constitutes a versatile method for multicopy integration of expression cassettes into the chromosome of Salmonella and possibly other bacteria. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
    Microbial Biotechnology 12/2014; 8(1). · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The innate immune system instructs the host on microbial exposure and infection. This information is critical to mount a protective innate and adaptive host response to microbial challenge, but is also involved in homeostatic and adaptive processes that adjust the organism to meet environmental requirements. This is of particular importance for the neonatal host during the transition from the protected fetal life to the intense and dynamic postnatal interaction with commensal and pathogenic microorganisms. Here, we discuss both adaptive and developmental mechanisms of the mucosal innate immune system that prevent inappropriate stimulation and facilitate establishment of a stable homeostatic host-microbial interaction after birth.
    Immunological Reviews 07/2014; 260(1):21-34. · 12.91 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
Jun 10, 2014