Relationship between chemical structure and the occupational asthma hazard of low molecular weight organic compounds.

University Computing Services, The University of Edinburgh, UK.
Occupational and environmental medicine (Impact Factor: 3.23). 05/2005; 62(4):243-50. DOI: 10.1136/oem.2004.016402
Source: PubMed

ABSTRACT To investigate quantitatively, relationships between chemical structure and reported occupational asthma hazard for low molecular weight (LMW) organic compounds; to develop and validate a model linking asthma hazard with chemical substructure; and to generate mechanistic hypotheses that might explain the relationships.
A learning dataset used 78 LMW chemical asthmagens reported in the literature before 1995, and 301 control compounds with recognised occupational exposures and hazards other than respiratory sensitisation. The chemical structures of the asthmagens and control compounds were characterised by the presence of chemical substructure fragments. Odds ratios were calculated for these fragments to determine which were associated with a likelihood of being reported as an occupational asthmagen. Logistic regression modelling was used to identify the independent contribution of these substructures. A post-1995 set of 21 asthmagens and 77 controls were selected to externally validate the model.
Nitrogen or oxygen containing functional groups such as isocyanate, amine, acid anhydride, and carbonyl were associated with an occupational asthma hazard, particularly when the functional group was present twice or more in the same molecule. A logistic regression model using only statistically significant independent variables for occupational asthma hazard correctly assigned 90% of the model development set. The external validation showed a sensitivity of 86% and specificity of 99%.
Although a wide variety of chemical structures are associated with occupational asthma, bifunctional reactivity is strongly associated with occupational asthma hazard across a range of chemical substructures. This suggests that chemical cross-linking is an important molecular mechanism leading to the development of occupational asthma. The logistic regression model is freely available on the internet and may offer a useful but inexpensive adjunct to the prediction of occupational asthma hazard.


Available from: Lindsay Sawyer, Jun 13, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with d-limonene, and also with OH, which reacted with d-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and d-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.
    Atmospheric Environment 04/2015; 106:382-391. DOI:10.1016/j.atmosenv.2014.06.062 · 3.06 Impact Factor
  • Source
    Current Allergy and Clinical Immunology 01/2012; 25(3):164-170. DOI:10.13140/2.1.4804.1604 · 0.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Amines, some of which are known to cause asthma, are frequently present in the work environment, but are rarely identified as being responsible for occupational rhinitis (OR) or asthma (OA). However, amine-induced OR/OA may be underreported. To discuss this hypothesis, we report a series of patients with positive amine-specific nasal provocation test (NPT).Methods Review of the medical charts of 37 patients with OR (alone or associated with asthma), submitted to a NPT with an aliphatic or alicyclic amine (except for EDTA) present in a product used at work.ResultsMost patients worked in the healthcare sector or for a cleaning company. Amines were mostly present in cleaning products. Seven patients had a positive NPT. NPTs were positive for the following amines: bis(aminopropyl)laurylamine, C12-C18 alkyldimethylamine oxides, bis(2-hydroxyethyl)tallowamine oxides, 3-dimethylaminopropylamine, 2,2′-dimethyl-4,4′-methylene-bis(cyclohexylamine), lauryldimethylamine oxide. NPTs were negative for the following amines: monoethanolamine, diethanolamine, triethanolamine, isopropanolamine, triethylamine, triethylenetetramine, aminopropyltriethoxysilane, alkylpropylenediamineguanidine acetate.Conclusions The frequency of amine-induced OR/OA may be underestimated, particularly when cleaning products are incriminated. Comprehensive investigation of all cases is mandatory to ensure an efficient prevention policy and consequently a good clinical and socio-occupational prognosis of occupational respiratory disease. Am. J. Ind. Med. 9999:1–8, 2014. © 2014 Wiley Periodicals, Inc.
    American Journal of Industrial Medicine 12/2014; 57(12). DOI:10.1002/ajim.22373 · 1.59 Impact Factor

Similar Publications