Article

Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA

Peter Medawar Building, University of Oxford, Oxford OX13SY, UK.
Journal of Experimental Medicine (Impact Factor: 13.91). 04/2005; 201(6):891-902. DOI: 10.1084/jem.20041455
Source: PubMed

ABSTRACT Human immunodeficiency virus (HIV)-1 amino acid sequence polymorphisms associated with expression of specific human histocompatibility leukocyte antigen (HLA) class I alleles suggest sites of cytotoxic T lymphocyte (CTL)-mediated selection pressure and immune escape. The associations most frequently observed are between expression of an HLA class I molecule and variation from the consensus sequence. However, a substantial number of sites have been identified in which particular HLA class I allele expression is associated with preservation of the consensus sequence. The mechanism behind this is so far unexplained. The current studies, focusing on two examples of "negatively associated" or apparently preserved epitopes, suggest an explanation for this phenomenon: negative associations can arise as a result of positive selection of an escape mutation, which is stable on transmission and therefore accumulates in the population to the point at which it defines the consensus sequence. Such negative associations may only be in evidence transiently, because the statistical power to detect them diminishes as the mutations accumulate. If an escape variant reaches fixation in the population, the epitope will be lost as a potential target to the immune system. These data help to explain how HIV is evolving at a population level. Understanding the direction of HIV evolution has important implications for vaccine development.

Download full-text

Full-text

Available from: Simon Mallal, Jun 21, 2015
3 Followers
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The classical antigen presentation pathway consists of two monomorphic (proteasome and TAP) and one polymorphic components (MHC Class I). Viruses can escape CTL responses by mutating an epitope so that it is no longer correctly processed by the pathway. Whereas escape mutations that affect MHC binding are typically no longer under selection pressure in the next host of the virus (as hosts differ in their MHC alleles), escape mutations that affect the antigen processing of epitope precursors prevent the use of those epitope precursors by any of the MHC alleles in a host population. Viruses might therefore be under selection pressure to adapt to the monomorphic proteasome and TAP. We designed an agent-based model of a host population, in which an HIV-1 like virus adapts to the antigen presentation pathway of individual hosts, as the virus spreads through the population. We studied how the polymorphism of the MHC and the monomorphism of the proteasome and TAP affected the level of adaptation to the host population that the virus could reach. We found that due to the polymorphism and high specificity of the MHC class I molecules, the CTL epitopes that are targeted by the CTL responses of different hosts do not share many epitope precursors. Therefore, escape mutations in epitope precursors are frequently released from immune selection pressure, and can revert back to the virus wildtype sequence. As a result, the selection pressure on the virus to adapt to the proteasome and TAP is relatively small, which explains the low level of adaptation of the virus to the monomorphic steps in the antigen presentation pathway.
    09/2010; 2(3):99-108. DOI:10.1016/j.epidem.2010.05.003
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While the antigenic variability is the major obstacle for developing vaccines against antigenically variable pathogens (AVPs) and cancer, this issue is not addressed adequately in current vaccine efforts. We developed a novel variable epitope library (VEL)-based vaccine strategy using immunogens carrying a mixture of thousands of variants of a single epitope. In this proof-of-concept study, we used an immunodominant HIV-1-derived CD8+ cytotoxic T-lymphocyte (CTL) epitope as a model antigen to construct immunogens in the form of plasmid DNA and recombinant M13 bacteriophages. We generated combinatorial libraries expressing epitope variants with random amino acid substitutions at 2-5 amino acid positions within the epitope. Mice immunized with these immunogens developed epitope-specific CD8+ IFN-gamma+ T-cell responses that recognized more than 50% of heavily mutated variants of wild-type epitope, as demonstrated in T-cell proliferation assays and FACS analysis. Strikingly, these potent and broad epitope-specific immune responses were long lasting: after 12 months of priming, epitope variants were recognized by CD8+ cells and effector memory T cells were induced. In addition, we showed, for the first time, the inhibition of T-cell responses at the molecular level by immune interference: the mice primed with wild-type epitope and 8 or 12 months later immunized with VELs, were not able to recognize variant epitopes efficiently. These data may give a mechanistic explanation for the failure of recent HIV vaccine trials as well as highlight specific hurdles in current molecular vaccine efforts targeting other important antigenically variable pathogens and diseases. These findings suggest that the VEL-based strategy for immunogen construction can be used as a reliable technological platform for the generation of vaccines against AVPs and cancer, and contribute to better understanding complex host-pathogen interactions.
    Molecular Immunology 10/2009; 47(2-3):270-82. DOI:10.1016/j.molimm.2009.09.024 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adaptive immune responses, cellular restrictive factors and antiretroviral drugs, target multiple regions in the Human Immunodeficiency Virus (HIV) proteome, imposing diverse pressures to viral adaptation. However, the virus is remarkably able to escape from these pressures as mutations are selected. In many cases these mutants have diminished viral fitness. We propose that the concerted action of strategically placed agents and pressures in a host can limit HIV variation capacity while inhibiting its replication. These mechanisms would corner HIV by selecting conflicting adaptive mutations, each having a disadvantage in face of another selective pressure. This would keep the virus unable to efficiently escape the suppressive effects of selective pressures. Cornering between antiretroviral drugs and cytotoxic T lymphocytes may explain recent observations, and can be predicted and used in viral control strategies. This idea can be extended to numerous other identified sites in the viral genome that confer selective pressures. We describe these other sites and how they could be induced to interact in prophylactic or therapeutic cornering strategies, as well as their experimental verifications. Cornering would control HIV infection better than current strategies, focused on few, albeit important, sites in the HIV genome.
    Medical Hypotheses 02/2007; 69(2):422-31. DOI:10.1016/j.mehy.2006.12.012 · 1.15 Impact Factor