Applications of mRNA injections for analyzing cell lineage and asymmetric cell divisions during segmentation in the leech Helobdella robusta

Department of Molecular and Cell Biology , University of California, Berkeley, Berkeley, California, United States
Development (Impact Factor: 6.27). 06/2005; 132(9):2103-13. DOI: 10.1242/dev.01802
Source: PubMed

ABSTRACT Synthetic mRNAs can be injected to achieve transient gene expression even for 'non-model' organisms in which genetic approaches are not feasible. Here, we have used this technique to express proteins that can serve as lineage tracers or reporters of cellular events in embryos of the glossiphoniid leech Helobdella robusta (phylum Annelida). As representatives of the proposed super-phylum Lophotrochozoa, glossiphoniid leeches are of interest for developmental and evolutionary comparisons. Their embryos are suitable for microinjection, but no genetic approaches are currently available. We have injected segmentation stem cells (teloblasts) with mRNAs encoding nuclear localized green fluorescent protein (nGFP) and its spectral variants, and have used tandem injections of nGFP mRNA followed by antisense morpholino oligomer (AS MO), to label single blast cell clones. These techniques permit high resolution cell lineage tracing in living embryos. We have applied them to the primary neurogenic (N) lineage, in which alternate segmental founder cells (nf and ns blast cells) contribute distinct sets of progeny to the segmental ganglia. The nf and ns blast cell clones exhibit strikingly different cell division patterns: the increase in cell number within the nf clone is roughly linear, while that in the ns clone is almost exponential. To analyze spindle dynamics in the asymmetric divisions of individual blast cells, we have injected teloblasts with mRNA encoding a tau::GFP fusion protein. Our results show that the asymmetric divisions of n blast cells result from a posterior shift of both the spindle within the cell and the midbody within the mitotic spindle, with differential regulation of these processes between nf and ns.

  • Source
    • "Prostomial and other non-segmental tissues arise in part from the earlier-born micromeres from all four quadrants (Weisblat et al. 1980, 1984; Huang et al. 2002) and from the early blast cells of selected teloblast lineages contribution (Zhang and Weisblat 2005; Gline et al. 2011). During stage 9, the non-segmental head ganglia and the prominent proboscis begin to form within the prostomial domain. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The intermediate filament (IF) cytoskeleton is a general feature of differentiated cells. Its molecular components, IF proteins, constitute a large family including the evolutionarily conserved nuclear lamins and the more diverse collection of cytoplasmic intermediate filament (CIF) proteins. In vertebrates, genes encoding CIFs exhibit cell/tissue type-specific expression profiles and are thus useful as differentiation markers. The expression of invertebrate CIFs, however, is not well documented. Here, we report a whole-genome survey of IF genes and their developmental expression patterns in the leech Helobdella, a lophotrochozoan model for developmental biology research. We found that, as in vertebrates, each of the leech CIF genes is expressed in a specific set of cell/tissue types. This allows us to detect earliest points of differentiation for multiple cell types in leech development and to use CIFs as molecular markers for studying cell fate specification in leech embryos. In addition, to determine the feasibility of using CIFs as universal metazoan differentiation markers, we examined phylogenetic relationships of IF genes from various species. Our results suggest that CIFs, and thus their cell/tissue-specific expression patterns, have expanded several times independently during metazoan evolution. Moreover, comparing the expression patterns of CIF orthologs between two leech species suggests that rapid evolutionary changes in the cell or tissue specificity of CIFs have occurred among leeches. Hence, CIFs are not suitable for identifying cell or tissue homology except among very closely related species, but they are nevertheless useful species-specific differentiation markers.
    Development Genes and Evolution 09/2011; 221(4):225-40. DOI:10.1007/s00427-011-0375-3 · 2.18 Impact Factor
  • Source
    • "Staging and cell nomenclature are as defined previously for H. robusta (Weisblat and Huang, 2001) however there are species specific differences in the cell cycle rates between H. robusta and the species used in this study H. sp. (Zhang and Weisblat, 2005; Gonsalves and Weisblat, 2007). Embryos of Tubifex tubifex were collected as previously described in (Shimizu, 1982). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The super-phylum Lophotrochozoa contains the plurality of extant animal phyla and exhibits a corresponding diversity of adult body plans. Moreover, in contrast to Ecdysozoa and Deuterostomia, most lophotrochozoans exhibit a conserved pattern of stereotyped early divisions called spiral cleavage. In particular, bilateral mesoderm in most lophotrochozoan species arises from the progeny of micromere 4d, which is assumed to be homologous with a similar cell in the embryo of the ancestral lophotrochozoan, more than 650 million years ago. Thus, distinguishing the conserved and diversified features of cell fates in the 4d lineage among modern spiralians is required to understand how lophotrochozoan diversity has evolved by changes in developmental processes. Here we analyze cell fates for the early progeny of the bilateral daughters (M teloblasts) of micromere 4d in the leech Helobdella sp. Austin, a clitellate annelid. We show that the first six progeny of the M teloblasts (em1-em6) contribute five different sets of progeny to non-segmental mesoderm, mainly in the head and in the lining of the digestive tract. The latter feature, associated with cells em1 and em2 in Helobdella, is seen with the M teloblast lineage in a second clitellate species, the sludgeworm Tubifex tubifex and, on the basis of previously published work, in the initial progeny of the M teloblast homologs in molluscan species, suggesting that it may be an ancestral feature of lophotrochozoan development.
    Developmental Biology 02/2011; 353(1):120-33. DOI:10.1016/j.ydbio.2011.01.031 · 3.64 Impact Factor
  • Source
    • "In some experiments, 10 mg/ml of either tetramethylrhodamine– dextran–amine (RDA) or Cascade Blue–dextran–amine (CDA) was added to the plasmid injectant as a lineage tracer. For control experiments, sibling embryos were injected under identical conditions with the pEF-nGFP plasmid, a gift from Stephanie Gline, which expresses GFP fused to a nuclear localization signal (Zhang and Weisblat, 2005) under control of the EF1α promoter. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The lateral ectoderm of the leech embryo arises from the o and p bandlets, two parallel columns of blast cells that collectively constitute the O/P equivalence group. Individual blast cells within this equivalence group become committed to alternative O or P developmental pathways in accordance with their respectively ventrolateral or dorsolateral position (Weisblat and Blair, 1984). We here describe a novel member of the Six gene transcription factor family, Hau-Six1/2A, which contributes to the patterning of these cell fates in the leech Helobdella sp. (Austin). During embryogenesis Hau-Six1/2A expression is restricted to the dorsolateral column of p blast cells, and thus correlates with P cell fate over most of the body's length. Experimental manipulations showed that Hau-Six1/2A expression is induced in p blast cells by the interaction with the adjoining q bandlet. In addition, misexpression of Hau-Six1/2A in the ventrolateral o blast cells by injection of an expression plasmid elicited the dorsolateral P cell fates ectopically. These data imply that Hau-Six1/2A is a component of the molecular pathway that normally distinguishes O and P cell fates within this equivalence group. Genomic analysis revealed that the Six1/2 subfamily has expanded to a total of six genes in Helobdella. The pattern of Hau-Six1/2A expression during later embryogenesis suggested that this gene may have lost ancestral function(s) and/or acquired novel roles in association with the gene duplications that produced this expansion.
    Developmental Biology 08/2010; 344(1):319-30. DOI:10.1016/j.ydbio.2010.05.020 · 3.64 Impact Factor
Show more