Differences in [99mTc]TRODAT-1 SPECT binding to dopamine transporters in patients with multiple system atrophy and Parkinson?s disease

Division of Nuclear Medicine, 110 Donner Building, H.U.P., 3400 Spruce Street, Philadelphia, PA, 19104, USA.
European journal of nuclear medicine and molecular imaging (Impact Factor: 5.38). 03/2005; 32(3):302-7. DOI: 10.1007/s00259-004-1667-x
Source: PubMed

ABSTRACT Multiple system atrophy (MSA), a disorder causing autonomic dysfunction, parkinsonism, and cerebellar dysfunction, is difficult to differentiate from other movement disorders, particularly early in the course of disease. This study evaluated whether [99mTc]TRODAT-1 binding to the dopamine transporter differentiates MSA from other movement disorders.
Single-photon emission computed tomographic brain scans were acquired in 25 MSA patients, 48 age-matched controls, and 130 PD patients, 3 h after the injection of 740 MBq (20 mCi) of [99mTc]TRODAT-1. Regions of interest (ROIs) were placed manually on subregions of both basal ganglia and distribution volume ratios (DVRs) were calculated. Regional DVRs were compared between study groups in MSA patients. Student's t tests were used to compare MSA patients with other study groups. Spearman correlations were used to compare DVRs with NP measures.
Based upon various motor scores, MSA and PD patients had comparable motor impairment, and were significantly impaired compared with controls. Mean DVRs in the basal ganglia of MSA patients were significantly less than those of controls, but generally higher (p<0.05) than in PD patients. In particular, the MSA patients had significantly increased DVRs in the posterior putamen (mean 0.49+/-0.30) compared with PD patients (0.74+/-0.25).
Movement disorder patients could be differentiated from controls, but MSA and PD patients could not be easily differentiated from each other. As a group, MSA patients had significantly higher mean [99mTc]TRODAT-1 binding, particularly in the posterior putamen, compared with PD patients and significantly lower binding compared with controls. This may reflect different pathophysiological processes of the two neurodegenerative diseases.

Download full-text


Available from: Abass Alavi, Sep 26, 2015
29 Reads
  • Source
    • "Although some studies appear to support the concept that the greater olfactory dysfunction of PD compared to MSA could reflect PD-related damage to dopaminergic cells, as indexed by in vivo DA transporter binding (Swanson et al., 2005), these measurements have been confined tothe striatum. Hence, it is not clear whether such effects are present in olfactory eloquent areas. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Olfactory dysfunction is an early 'pre-clinical' sign of Parkinson's disease (PD). The present review is a comprehensive and up-to-date assessment of such dysfunction in PD and related disorders. The olfactory bulb is implicated in the dysfunction, since only those syndromes with olfactory bulb pathology exhibit significant smell loss. The role of dopamine in the production of olfactory system pathology is enigmatic, as overexpression of dopaminergic cells within the bulb's glomerular layer is a common feature of PD and most animal models of PD. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with the most smell loss. When compromised, these systems, which regulate microglial activity, can influence the induction of localized brain inflammation, oxidative damage, and cytosolic disruption of cellular processes. In monogenetic forms of PD, olfactory dysfunction is rarely observed in asymptomatic gene carriers, but is present in many of those that exhibit the motor phenotype. This suggests that such gene-related influences on olfaction, when present, take time to develop and depend upon additional factors, such as those from aging, other genes, formation of α-synuclein- and tau-related pathology, or lowered thresholds to oxidative stress from toxic insults. The limited data available suggest that the physiological determinants of the early changes in PD-related olfactory function are likely multifactorial and may include the same determinants as those responsible for a number of other non-motor symptoms of PD, such as dysautonomia and sleep disturbances.
    Neurobiology of Disease 12/2011; 46(3):527-52. DOI:10.1016/j.nbd.2011.10.026 · 5.08 Impact Factor
  • Source
    • "The regions were different shapes to accommodate the different structures (some more round and some more oblong) and ranged from 7 to 14 pixels (corresponding to an area of 3–62 mm 2) . This standardized template had been validated in previous studies (Amsterdam and Newberg, 2007; Newberg et al., 2007; Swanson et al., 2005). Basal ganglia ROIs were placed on 3 consecutive slices so that the ROIs were within each structure both on each slice and across the slices (i.e., in the x, y, and z dimensions). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine use is a significant problem in the US and it is well established that cocaine binds to the dopamine transporter (DAT) in the brain. This study was designed to determine if the DAT levels measured by 99mTc TRODAT SPECT (single photon emission computed tomography) brain scans are altered in cocaine dependent subjects and to explore clinical correlates of such alterations. SPECT brain scans were acquired on 21 cocaine dependent subjects and 21 healthy matched controls. There were significantly higher DAT levels in cocaine dependent subjects compared to controls for the anterior putamen (p=0.003; Cohen's d effect size=0.98), posterior putamen (p<0.001; effect size=1.32), and caudate (p=0.003; effect size=0.97). DAT levels in these regions were 10%, 17%, and 8% higher in the cocaine dependent subjects compared to controls. DAT levels were unrelated to craving, severity of cocaine use, or duration of cocaine use, but DAT levels in the caudate and anterior putamen were significantly (p<0.05) negatively correlated with days since last use of cocaine.
    Drug and Alcohol Dependence 06/2008; 98(1-2):70-6. DOI:10.1016/j.drugalcdep.2008.04.014 · 3.42 Impact Factor
  • Source
    • "We excluded an additional 61, because the absolute numbers with a cut-off point of 2 standard deviations below the control group were not available or could not be derived. We mailed the authors of the four studies with more than 85 patients, to ask for missing data [29-32], and received a response from 1 [30]. We wanted to acquire raw data from relatively large studies that would have a substantial impact on our meta-analysis; there were 4 large studies with more than 85 patients, the rest involved smaller numbers in the 20–35 range. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is the second most common neurodegenerative disorder. One of the most widely used techniques to diagnose PD is a Single Photon Emission Computer Tomography (SPECT) scan to visualise the integrity of the dopaminergic pathways in the brain. Despite this there remains some discussion on the value of SPECT in the differential diagnosis of PD. We did a meta-analysis of all the existing literature on the diagnostic accuracy of both pre- and post-synaptic SPECT imaging in the differential diagnosis of PD. Relevant studies were searched in Medline, EMBASE and Cochrane databases with back-searching of their reference lists. We limited our analysis to studies with a clinically relevant methodology: i.e. when they assessed the ability of the SPECT to provide 1. diagnosis of PD in an early phase vs. normalcy; 2 diagnostic differentiation between PD and essential tremor (ET); 3. distinguishing between PD and vascular parkinsonism (VP); 4. delineation of PD from atypical parkinsonian syndromes (APS). Gold standard was, dependent on the study type, clinical examination at initial visit or follow-up, and/or response to dopaminergic agents. The search gave 185 hits, of which we deemed 32 suitable for our analysis. From these we recalculated the diagnostic odds ratio of SPECT for the clinical questions above. The pooled odds ratio (with 95%CI) for presynaptic SPECT scan's ability to distinguish between early PD and normalcy was 60 (13 - 277). For the ability to differentiate between PD and ET this ratio was 210 (79-562). The ratio for presynaptic SPECT's ability to delineate PD from VP was 105 (32 - 348). The mean odds ratio for the presynaptic SPECT scans to differentiate between PD and the two APS was 2 (1 - 4), and for the postsynaptic SPECT imaging this was 19 (9-36). SPECT with presynaptic radiotracers is relatively accurate to differentiate patients with PD in an early phase from normalcy, patients with PD from those with ET, and PD from VP. The accuracy of SPECT with both presynaptic and postsynaptic tracers to differentiate between PD and APS is relatively low.
    BMC Neurology 02/2007; 7(1):27. DOI:10.1186/1471-2377-7-27 · 2.04 Impact Factor
Show more