Lys(6)-modified ubiquitin inhibits ubiquitin-dependent protein degradation

Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 06/2005; 280(21):20365-74. DOI: 10.1074/jbc.M414356200
Source: PubMed

ABSTRACT Ubiquitin plays essential roles in various cellular processes; therefore, it is of keen interest to study the structure-function relationship of ubiquitin itself. We investigated the modification of Lys(6) of ubiquitin and its physiological consequences. Mass spectrometry-based peptide mapping and N-terminal sequencing demonstrated that, of the 7 Lys residues in ubiquitin, Lys(6) was the most readily labeled with sulfosuccinimidobiotin. Lys(6)-biotinylated ubiquitin was incorporated into high molecular mass ubiquitin conjugates as efficiently as unmodified ubiquitin. However, Lys(6)-biotinylated ubiquitin inhibited ubiquitin-dependent proteolysis, as conjugates formed with Lys(6)-biotinylated ubiquitin were resistant to proteasomal degradation. Ubiquitins with a mutation of Lys(6) had similar phenotypes as Lys(6)-biotinylated ubiquitin. Lys(6) mutant ubiquitins (K6A, K6R, and K6W) also inhibited ATP-dependent proteolysis and caused accumulation of ubiquitin conjugates. Conjugates formed with K6W mutant ubiquitin were also resistant to proteasomal degradation. The dominant-negative effect of Lys(6)-modified ubiquitin was further demonstrated in intact cells. Overexpression of K6W mutant ubiquitin resulted in accumulation of intracellular ubiquitin conjugates, stabilization of typical substrates for ubiquitin-dependent proteolysis, and enhanced susceptibility to oxidative stress. Taken together, these results show that Lys(6)-modified ubiquitin is a potent and specific inhibitor of ubiquitin-mediated protein degradation.

Download full-text


Available from: Weimin Guo, Jul 27, 2015
1 Follower
  • Source
    • "Dysfunction of the UPP has been implicated in the pathogenesis of many degenerative diseases such as Alzheimer's disease [52], Parkinson's disease [53], diabetic retinopathy [54], and cataract [55] [56]. A fully functional UPP is required for cells to cope with various stresses, including heavy metals [57], amino acid analogs, and oxidation [58]. However, an extensive oxidative insult also impairs the function of critical components of the UPP [59] [60] [61] [62] [63] [64]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative damage and inflammation are related to the pathogenesis of age-related macular degeneration (AMD). Epidemiologic studies suggest that insufficient dietary lutein and zeaxanthin intake or lower serum zeaxanthin levels are associated with increased risk for AMD. The objective of this work is to test the protective effects of lutein and zeaxanthin against photooxidative damage to retinal pigment epithelial cells (RPE) and oxidation-induced changes in expression of inflammation-related genes. To mimic lipofuscin-mediated photooxidation in vivo, we used ARPE-19 cells that accumulated A2E, a lipofuscin fluorophore and photosensitizer, as a model system to investigate the effects of lutein and zeaxanthin supplementation. The data show that supplementation with lutein or zeaxanthin in the medium resulted in accumulation of lutein or zeaxanthin in the RPE cells. The concentrations of lutein and zeaxanthin in the cells were 2- to 14-fold of that detected in the medium, indicating that ARPE-19 cells actively take up lutein or zeaxanthin. As compared with untreated cells, exposure of A2E-containing RPE to blue light resulted in a 40-60% decrease in proteasome activity, a 50-80% decrease in expression of CFH and MCP-1, and an∼20-fold increase in expression of IL-8. The photooxidation-induced changes in expression of MCP-1, IL-8, and CFH were similar to those caused by chemical inhibition of the proteasome, suggesting that inactivation of the proteasome is involved in the photooxidation-induced alteration in expression of these inflammation-related genes. Incubation of the A2E-containing RPE with lutein or zeaxanthin prior to blue light exposure significantly attenuated the photooxidation-induced inactivation of the proteasome and photooxidation-induced changes in expression of MCP-1, IL-8, and CFH. Together, these data indicate that lutein or zeaxanthin modulates inflammatory responses in cultured RPE in response to photooxidation. Protecting the proteasome from oxidative inactivation appears to be one of the mechanisms by which lutein and zeaxanthin modulate the inflammatory response. Similar mechanisms may explain salutary effects of lutein and zeaxanthin in reducing the risk for AMD.
    Free Radical Biology and Medicine 06/2012; 53(6):1298-307. DOI:10.1016/j.freeradbiomed.2012.06.024 · 5.71 Impact Factor
  • Source
    • ", compare lanes 10-12 vs. 4-6). Additional support for cross talk between the pathways is indicated by formation of the autophagy indicator, LC3-II, when ubiquitin conjugates accumulate due to inhibition of the UPS by expression of conjugationcompetent but degradation-incompetent ubiquitin (Figure S9B) (Shang et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiologic studies indicate that the risks for major age-related debilities including coronary heart disease, diabetes, and age-related macular degeneration (AMD) are diminished in people who consume lower glycemic index (GI) diets, but lack of a unifying physiobiochemical mechanism that explains the salutary effect is a barrier to implementing dietary practices that capture the benefits of consuming lower GI diets. We established a simple murine model of age-related retinal lesions that precede AMD (hereafter called AMD-like lesions). We found that consuming a higher GI diet promotes these AMD-like lesions. However, mice that consumed the lower vs. higher GI diet had significantly reduced frequency (P < 0.02) and severity (P < 0.05) of hallmark age-related retinal lesions such as basal deposits. Consuming higher GI diets was associated with > 3 fold higher accumulation of advanced glycation end products (AGEs) in retina, lens, liver, and brain in the age-matched mice, suggesting that higher GI diets induce systemic glycative stress that is etiologic for lesions. Data from live cell and cell-free systems show that the ubiquitin-proteasome system (UPS) and lysosome/autophagy pathway [lysosomal proteolytic system (LPS)] are involved in the degradation of AGEs. Glycatively modified substrates were degraded significantly slower than unmodified substrates by the UPS. Compounding the detriments of glycative stress, AGE modification of ubiquitin and ubiquitin-conjugating enzymes impaired UPS activities. Furthermore, ubiquitin conjugates and AGEs accumulate and are found in lysosomes when cells are glycatively stressed or the UPS or LPS/autophagy are inhibited, indicating that the UPS and LPS interact with one another to degrade AGEs. Together, these data explain why AGEs accumulate as glycative stress increases.
    Aging cell 10/2011; 11(1):1-13. DOI:10.1111/j.1474-9726.2011.00752.x · 5.94 Impact Factor
  • Source
    • "Lys48 polyubiquitination is well-recognised as the signal of targeting proteins for degradation by the UPS. It has also been reported that modifications of Lys6 inhibits ubiquitin-dependent protein degradation [87]. Therefore, the identification of these modifications indicates that dysfunction of the UPS may initiate the formation of degradationresistant polyubiquitinated Tau tangles in Alzheimer's. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein degradation is a fundamental biological process, which is essential for the maintenance and regulation of normal cellular function. In humans and animals, proteins can be degraded by a number of mechanisms: the ubiquitin-proteasome system, autophagy and intracellular proteases. The advances in contemporary protein analysis means that proteomics is increasingly being used to explore these key pathways and as a means of monitoring protein degradation. The dysfunction of protein degradative pathways has been associated with the development of a number of important diseases including cancer, muscle wasting disorders and neurodegenerative diseases. This review will focus on the role of proteomics to study cellular degradative processes and how these strategies are being applied to understand the molecular basis of diseases arising from disturbances in protein degradation.
    PROTEOMICS - CLINICAL APPLICATIONS 02/2010; 4(2):133-42. DOI:10.1002/prca.200900159 · 2.68 Impact Factor
Show more