The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus.

Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China.
Chemistry & Biology (Impact Factor: 6.16). 04/2005; 12(3):303-11. DOI: 10.1016/j.chembiol.2005.01.006
Source: PubMed

ABSTRACT Bananins are a class of antiviral compounds with a unique structural signature incorporating a trioxa-adamantane moiety covalently bound to a pyridoxal derivative. Six members of this class of compounds: bananin, iodobananin, vanillinbananin, ansabananin, eubananin, and adeninobananin were synthesized and tested as inhibitors of the SARS Coronavirus (SCV) helicase. Bananin, iodobananin, vanillinbananin, and eubananin were effective inhibitors of the ATPase activity of the SCV helicase with IC50 values in the range 0.5-3 microM. A similar trend, though at slightly higher inhibitor concentrations, was observed for inhibition of the helicase activities, using a FRET-based fluorescent assay. In a cell culture system of SCV, bananin exhibited an EC50 of less than 10 microM and a CC50 of over 300 microM. Kinetics of inhibition are consistent with bananin inhibiting an intracellular process or processes involved in SCV replication.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The international response to SARS-CoV has produced an outstanding number of protein structures in a very short time. This review summarizes the findings of functional and structural studies including those derived from cryoelectron microscopy, small angle X-ray scattering, NMR spectroscopy, and X-ray crystallography, and incorporates bioinformatics predictions where no structural data is available. Structures that shed light on the function and biological roles of the proteins in viral replication and pathogenesis are highlighted. The high percentage of novel protein folds identified among SARS-CoV proteins is discussed.
    Virus Research 12/2013; · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To combat the public health threat from emerging coronaviruses (CoV), the development of antiviral therapies with either virus-specific or pan-coronaviral activities is necessary. An important step in antiviral drug development is the screening of potential inhibitors in cell-based systems. The recent emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) necessitates adapting methods that have been used to identify antivirals against severe acute respiratory syndrome coronavirus (SARS-CoV) and developing new approaches to more efficiently screen antiviral drugs. In this article we review cell-based assays using infectious virus (BSL-3) and surrogate assays (BSL-2) that can be implemented to accelerate antiviral development against MERS-CoV and future emergent coronaviruses. This paper forms part of a series of invited articles in Antiviral Research on ‘‘From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.’’
    Antiviral research 11/2013; · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hepatitis E virus is a common cause of acute hepatitis. Contrary to hepatitis B and C, hepatitis E is mostly a mild infection, although it has a high mortality in pregnant women and can evolve to chronicity in immunocompromised patients. Ribavirin and pegylated interferon-α are the only available therapies, but both have side effects that are not acceptable for prophylaxis or treatment of mild infections. In addition, these drugs cannot be used for all patient types (e.g. in case of pregnancy, specific organ transplants or co-morbidities) and in resource-poor settings. Hence there is an urgent need for better antiviral treatments that are efficacious and safe, also during pregnancy. In this review, a concise introduction to the virus and disease is provided, followed by a discussion of the available assay systems and potential molecular targets (viral proteins and host factors) for the development of inhibitors of HEV replication. Finally, directions for future research are presented.
    Antiviral research 12/2013; · 3.61 Impact Factor


Available from
Jun 6, 2014