Brain-derived neurotrophic factor enhances GABA release probability and nonuniform distribution of N- and P/Q-type channels on release sites of hippocampal inhibitory synapses.

Istituto Nazionale di Fisica della Materia Research Unit, Nanostructured Interfaces and Surfaces Center, I-10125 Turin, Italy.
Journal of Neuroscience (Impact Factor: 6.91). 03/2005; 25(13):3358-68. DOI: 10.1523/JNEUROSCI.4227-04.2005
Source: PubMed

ABSTRACT Long-lasting exposures to brain-derived neurotrophic factor (BDNF) accelerate the functional maturation of GABAergic transmission in embryonic hippocampal neurons, but the molecular bases of this phenomenon are still debated. Evidence in favor of a postsynaptic site of action has been accumulated, but most of the data support a presynaptic site effect. A crucial issue is whether the enhancement of evoked IPSCs (eIPSCs) induced by BDNF is attributable to an increase in any of the elementary parameters controlling neurosecretion, namely the probability of release, the number of release sites, the readily releasable pool (RRP), and the quantal size. Here, using peak-scaled variance analysis of miniature IPSCs, multiple probability fluctuation analysis, and cumulative amplitude analysis of action potential-evoked postsynaptic currents, we show that BDNF increases release probability and vesicle replenishment with little or no effect on the quantal size, the number of release sites, the RRP, and the Ca2+ dependence of eIPSCs. BDNF treatment changes markedly the distribution of Ca2+ channels controlling neurotransmitter release. It enhances markedly the contribution of N- and P/Q-type channels, which summed to >100% ("supra-additivity"), and deletes the contribution of R-type channels. BDNF accelerates the switch of presynaptic Ca2+ channel distribution from "segregated" to "nonuniform" distribution. This maturation effect was accompanied by an uncovered increased control of N-type channels on paired-pulse depression, otherwise dominated by P/Q-type channels in untreated neurons. Nevertheless, BDNF preserved the fast recovery from depression associated with N-type channels. These novel presynaptic BDNF actions derive mostly from an enhanced overlapping and better colocalization of N- and P/Q-type channels to vesicle release sites.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Effective interventions that provide obvious neuroprotection are currently fairly limited. Glucagon-like peptide-1 (GLP-1), an enhancer of insulin production with a trophic effect on β cells in the islets, has been found to be trophic for neuronal cells. Alogliptin benzoate (AGL), a selective inhibitor of dipeptidylpeptidase-4 (DPP-4) functioning as a long-acting agonist of GLP-1, is in clinical use worldwide for patients with diabetes mellitus type 2. To clarify whether administration of AGL, independent of the insulinotropic effect, protects the brain against focal ischemia, we investigated the effect of AGL on the development of cerebral infarction in non-diabetic normal mice. Male C57BL/6J mice were administered AGL (7.5, 15, or 30μg) once a day for three weeks by intragastric gavage. After the induction of temporary focal ischemia, volumes of infarcted lesions and neurological deficits were analyzed at 24hours (acute phase) and seven days (chronic phase). In the acute phase, significant reductions were observed in the volumes of infarcted lesions (p=0.009), and in the severity of neurological deficits (p=0.004), in the group treated with 15μg of alogliptin benzoate, but not the 7.5 or 30μg-treated groups. This significant reduction in volumes of infarcted lesions persisted into the chronic phase. At the end of the AGL treatment; before the induction of ischemia, the levels of brain-derived neurotrophic factor (BDNF), a potent neuroprotectant in the brain, were elevated in the cortex (p=0.008), or in the whole forebrain (p=0.023). AGL could be used as a daily neuroprotectant or an enhancer of BDNF production aiming to attenuate cerebral injuries, for the growing number of people who have the risk of ischemic stroke.
    Brain research 04/2013; · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hippocampal gamma oscillation, involved in cognitive processes, can be induced by muscarinic acetylcholine receptors activation and depends in large part on the activation of γ-aminobutyric acidergic (GABAergic) interneurons. The precise role of the modulatory action of muscarinic receptors on GABAergic transmission still remains unclear due to the great heterogeneity of observed effects. We have examined the presynaptic and postsynaptic mechanisms involved. Methacholine induces a down-regulation of evoked inhibitory postsynaptic currents (eIPSCs) not associated with the change of postsynaptic receptors. The significant decrease in the paired-pulse depression strongly suggested a presynaptic mechanism of action. We have used cumulative amplitude profile analysis to show that the impairment of eIPSCs is not related to a decreased size of the readily releasable pool, but rather depends on the reduced release probability by a down-modulation of voltage-gated calcium channels. The decreased neurotransmitter release probability only partially accounts for the dramatic reduction in the rate of synaptic depression evoked by short- and long-lasting tetanic stimuli. This effect is accompanied by a significant enhancement in the rate of recovery from synaptic depression that demonstrates the reinforcement of the synaptic recycling processes. These results show that muscarinic modulation of hippocampal GABAergic synapses confers a greater resistance to sustain periods of intense synaptic activity in the gamma frequency range.
    Cerebral Cortex 02/2013; · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A heterogeneous population of inhibitory neurons controls the flow of information through a neural circuit. Inhibitory synapses that form on pyramidal neuron dendrites modulate the summation of excitatory synaptic potentials and prevent the generation of dendritic calcium spikes. Precisely timed somatic inhibition limits both the number of action potentials and the time window during which firing can occur. The activity-dependent transcription factor NPAS4 regulates inhibitory synapse number and function in cell culture, but how this transcription factor affects the inhibitory inputs that form on distinct domains of a neuron in vivo was unclear. Here we show that in the mouse hippocampus behaviourally driven expression of NPAS4 coordinates the redistribution of inhibitory synapses made onto a CA1 pyramidal neuron, simultaneously increasing inhibitory synapse number on the cell body while decreasing the number of inhibitory synapses on the apical dendrites. This rearrangement of inhibition is mediated in part by the NPAS4 target gene brain derived neurotrophic factor (Bdnf), which specifically regulates somatic, and not dendritic, inhibition. These findings indicate that sensory stimuli, by inducing NPAS4 and its target genes, differentially control spatial features of neuronal inhibition in a way that restricts the output of the neuron while creating a dendritic environment that is permissive for plasticity.
    Nature 11/2013; 503(7474):121-5. · 38.60 Impact Factor


Available from
May 22, 2014