Fgf10 expression identifies parabronchial smooth muscle cell progenitors and is required for their entry into the smooth muscle cell lineage

Institut Curie, Lutetia Parisorum, Île-de-France, France
Development (Impact Factor: 6.27). 06/2005; 132(9):2157-66. DOI: 10.1242/dev.01795
Source: PubMed

ABSTRACT Lineage formation in the lung mesenchyme is poorly understood. Using a transgenic mouse line expressing LacZ under the control of Fgf10 regulatory sequences, we show that the pool of Fgf10-positive cells in the distal lung mesenchyme contains progenitors of the parabronchial smooth muscle cells. Fgf10 gene expression is slightly repressed in this transgenic line. This allowed us to create a hypomorphic Fgf10 phenotype by expressing the LacZ transgene in a heterozygous Fgf10 background. Hypomorphic Fgf10 mutant lungs display a decrease in beta-galactosidase-positive cells around the bronchial epithelium associated with an accumulation of beta-galactosidase-expressing cells in the distal mesenchyme. This correlates with a marked reduction of alpha smooth muscle actin expression, thereby demonstrating that FGF10 is mostly required for the entry of mesenchymal cells into the parabronchial smooth muscle cell lineage. The failure of exogenous FGF10 to phosphorylate its known downstream targets ERK and AKT in lung mesenchymal cultures strongly suggests that FGF10 acts indirectly on the progenitor population via an epithelial intermediate. We provide support for a role of epithelial BMP4 in mediating the formation of parabronchial smooth muscle cells.

Download full-text


Available from: Saverio Bellusci, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.
    09/2014; 2014:538379. DOI:10.1155/2014/538379
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatic stem/progenitor cells are known to be present in most adult tissues. However, those in the lung have limited abilities for tissue regeneration after serious damage as a result of chronic disease. Therefore, regenerative medicine using exogenous stem cells has been suggested for the treatment of progressive lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis. Embryonic stem (ES) cells and induced pluripotent stem cells, with their potent differentiation abilities, are promising sources for the generation of various tissue cells. In this study, we investigated the effects of various differentiation-inducing growth factors on the differentiation of lung cells from ES cells in vitro. Several factors, including activin, nodal, and noggin, significantly promoted the induction of Nkx2.1-positive lung progenitor cells when cells were cultured as embryoid bodies. Bone morphogenetic protein (BMP) 4 signaling controls the lineage commitment of lung cells along the proximal-distal axis. BMP4 promotes the induction of distal cell lineages of alveolar bud, such as Clara cells and mucus-producing goblet cells. These results suggest that several developmentally essential factors, including nodal/activin and BMP signaling, are important in the control of the differentiation of lung epithelial cells from mouse ES cells in vitro.
    In Vitro Cellular & Developmental Biology - Animal 03/2013; DOI:10.1007/s11626-013-9589-1 · 1.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proper lung functioning requires not only a correct structure of the conducting airway tree, but also the simultaneous development of smooth muscles and vasculature. Lung branching morphogenesis is strongly stereotyped and involves the recursive use of only three modes of branching. We have previously shown that the experimentally described interactions between Fibroblast growth factor (FGF)10, Sonic hedgehog (SHH) and Patched (Ptc) can give rise to a Turing mechanism that not only reproduces the experimentally observed wildtype branching pattern but also, in part counterintuitive, patterns in mutant mice. Here we show that, even though many proteins affect smooth muscle formation and the expression of Vegfa, an inducer of blood vessel formation, it is sufficient to add FGF9 to the FGF10/SHH/Ptc module to successfully predict simultaneously the emergence of smooth muscles in the clefts between growing lung buds, and Vegfa expression in the distal sub-epithelial mesenchyme. Our model reproduces the phenotype of both wildtype and relevant mutant mice, as well as the results of most culture conditions described in the literature.
    08/2012; 1(8):775-88. DOI:10.1242/bio.20121339