Amazonia and the modern carbon cycle: lessons learned.

Laboratório de Ecologia Isotópica-CENA/USP, Av. Centenário, 303, 13416-000, Piracicaba, SP, Brazil.
Oecologia (Impact Factor: 3.25). 06/2005; 143(4):483-500. DOI: 10.1007/s00442-005-0034-3
Source: PubMed

ABSTRACT In this paper, we review some critical issues regarding carbon cycling in Amazonia, as revealed by several studies conducted in the Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA). We evaluate both the contribution of this magnificent biome for the global net primary productivity/net ecosystem exchange (NPP/NEE) and the feedbacks of climate change on the dynamics of Amazonia. In order to place Amazonia in a global perspective and make the carbon flux obtained through the LBA project comparable with global carbon budgets, we extrapolated NPP/NEE values found by LBA studies to the entire area of the Brazilian Amazon covered by rainforest. The carbon emissions due to land use changes for the tropical regions of the world produced values from 0.96 to 2.4 Pg C year(-1), while atmospheric CO2 inversion models have recently indicated that tropical lands in the Americas could be exchanging a net 0.62+/-1.15 Pg C year(-1) with the atmosphere. The difference calculated from these two methods would imply a local sink of approximately 1.6-1.7 Pg C year(-1), or a source of 0.85 ton C ha(-1) year(-1). Using our crude extrapolation of LBA values for the Amazon forests (5 million km2) we estimate a range for the C flux in the region of -3.0 to 0.75 Pg C year(-1). The exercise here does not account for environmental variability across the region, but it is an important driver for present and future studies linking local process (i.e. nutrient availability, photosynthetic capacity, and so forth) to global and regional dynamic approaches.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [1] We have estimated global surface fluxes of carbon dioxide for the period 1992–1996 using an inverse approach that sequentially considers four constraints: (1) atmospheric CO2, (2) ocean interior DIC (dissolved inorganic carbon) interpreted through an ocean interior inversion and surface ocean pCO2 (partial pressure of CO2), (3) annual prior fluxes for selected land regions, and (4) atmospheric model selection based on vertical transport skill. Estimated fluxes are monthly resolved for each of the 22 Transcom regions over land and ocean. The ocean constraint is particularly valuable, as it does not only add prior information about air-sea fluxes to the inversion problem but also preserves the regional variance-covariance structure from the underlying ocean interior inversion. It allows to constrain annual oceanic uptake of 1.8 PgCyr−1 to within 0.2 PgCyr−1, which implies a net annual land uptake of 1.3 (±0.3) PgCyr−1. Furthermore, it leads to a pronounced asymmetry in the seasonal pattern of global land uptake, which was not seen in previous atmosphere-only inversions. Tropical land is consistently estimated to be a source of carbon, though the source magnitude is reduced as more constraints are applied. With all four constraints, the inversion suggests a net tropical source of 1.1 (±0.9) PgCyr−1, which is comparable to global estimates of deforestation rates in tropical forests and therefore implies an annually balanced tropical land biosphere flux. This balance is not found, however, at the regional level: For the Amazonian region and after accounting for deforestation, we find a biospheric source of 0.6 (±0.5) PgCyr−1. This is at the upper range of estimates from bottom-up methods, which tend to identify the region as a sink.
    Global Biogeochemical Cycles. 09/2013; 27(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aerosol particles associated with biomass burning emissions affect the surface radiative budget and net ecosystem exchange (NEE) over large areas in Amazonia during the dry season. We analysed CO2 fluxes as a function of aerosol loading for two forest sites in Amazonia as part of the LBA experiment. Aerosol optical thickness (AOT) measurements were made with AERONET sun photometers, and CO2 flux measurements were determined by eddy-correlation. The enhancement of the NEE varied with different aerosol loading, as well as cloud cover, solar elevation angles and other parameters. The AOT value with the strongest effect on the NEE in the FLONA-Tapajós site was 1.7, with an enhancement of the NEE of 11% compared with clear-sky conditions. In the RBJ site, the strongest effect was for AOT of 1.6 with an enhancement of 18% in the NEE. For values of AOT lager than 2.7, strong reduction on the NEE was observed due to the reduction in the total solar radiation. The enhancement in the NEE is attributed to the increase of diffuse versus direct solar radiation. Due to the fact that aerosols from biomass burning are present in most tropical areas, its effects on the global carbon budget could also be significant.
    Tellus B 07/2007; 59(4):338-349. · 3.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the wet season, a large portion of the Amazon region constitutes one of the most pristine continental areas, with very low concentrations of atmospheric trace gases and aerosol particles. However, land use change modifies the biosphere-atmosphere interactions in such a way that key processes that maintain the functioning of Amazonia are substantially altered. This study presents a comparison between aerosol properties observed at a preserved forest site in Central Amazonia (TT34 North of Manaus) and at a heavily biomass burning impacted site in south-western Amazonia (PVH, close to Porto Velho). Amazonian aerosols were characterized in detail, including aerosol size distributions, aerosol light absorption and scattering, optical depth and aerosol inorganic and organic composition, among other properties. The central Amazonia site (TT34) showed low aerosol concentrations (PM2.5 of 1.3 +/- 0.7 microg m(-3) and 3.4 +/- 2.0 microg m(-3) in the wet and dry seasons, respectively), with a median particle number concentration of 220 cm(-3) in the wet season and 2200 cm(-3) in the dry season. At the impacted site (PVH), aerosol loadings were one order of magnitude higher (PM2.5 of 10.2 +/- 9.0 microg m(-3) and 33.0 +/- 36.0 microg m(-3) in the wet and dry seasons, respectively). The aerosol number concentration at the impacted site ranged from 680 cm(-3) in the wet season up to 20 000 cm(-3) in the dry season. An aerosol chemical speciation monitor (ACSM) was deployed in 2013 at both sites, and it shows that organic aerosol account to 81% to the non-refractory PM1 aerosol loading at TT34, while biomass burning aerosols at PVH shows a 93% content of organic particles. Three years of filter-based elemental composition measurements shows that sulphate at the impacted site decreases, on average, from 12% of PM2.5 mass during the wet season to 5% in the dry season. This result corroborates the ACSM finding that the biomass burning contributed overwhelmingly to the organic fine mode aerosol during the dry season in this region. Aerosol light scattering and absorption coefficients at the TT34 site were low during the wet season, increasing by a factor of 5, approximately, in the dry season due to long range transport of biomass burning aerosols reaching the forest site in the dry season. Aerosol single scattering albedo (SSA) ranged from 0.84 in the wet season up to 0.91 in the dry. At the PVH site, aerosol scattering coefficients were 3-5 times higher in comparison to the TT34 site, an indication of strong regional background pollution, even in the wet season. Aerosol absorption coefficients at PVH were about 1.4 times higher than at the forest site. Ground-based SSA at PVH was around 0.92 year round, showing the dominance of scattering aerosol particles over absorption, even for biomass burning aerosols. Remote sensing observations from six AERONET sites and from MODIS since 1999, provide a regional and temporal overview. Aerosol Optical Depth (AOD) at 550 nm of less than 0.1 is characteristic of natural conditions over Amazonia. At the perturbed PVH site, AOD550 values greater than 4 were frequently observed in the dry season. Combined analysis of MODIS and CERES showed that the mean direct radiative forcing of aerosols at the top of the atmosphere (TOA) during the biomass burning season was -5.6 +/- 1.7 W m(-2), averaged over whole Amazon Basin. For high AOD (larger than 1) the maximum daily direct aerosol radiative forcing at the TOA was as high as -20 W m(-2) locally. This change in the radiation balance caused increases in the diffuse radiation flux, with an increase of Net Ecosystem Exchange (NEE) of 18-29% for high AOD. From this analysis, it is clear that land use change in Amazonia shows alterations of many atmospheric properties, and these changes are affecting the functioning of the Amazonian ecosystem in significant ways.
    Faraday Discussions 01/2013; 165:203-35. · 4.19 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014