Visualization of COPII and Golgi dynamics in Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with ER exit sites

Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany.
The Plant Cell (Impact Factor: 9.34). 05/2005; 17(5):1513-31. DOI: 10.1105/tpc.104.026757
Source: PubMed

ABSTRACT Despite the ubiquitous presence of the COPI, COPII, and clathrin vesicle budding machineries in all eukaryotes, the organization of the secretory pathway in plants differs significantly from that in yeast and mammalian cells. Mobile Golgi stacks and the lack of both transitional endoplasmic reticulum (ER) and a distinct ER-to-Golgi intermediate compartment are the most prominent distinguishing morphological features of the early secretory pathway in plants. Although the formation of COPI vesicles at periphery of Golgi cisternae has been demonstrated in plants, exit from the ER has been difficult to visualize, and the spatial relationship of this event is now a matter of controversy. Using tobacco (Nicotiana tabacum) BY-2 cells, which represent a highly active secretory system, we have used two approaches to investigate the location and dynamics of COPII binding to the ER and the relationship of these ER exit sites (ERES) to the Golgi apparatus. On the one hand, we have identified endogenous COPII using affinity purified antisera generated against selected COPII-coat proteins (Sar1, Sec13, and Sec23); on the other hand, we have prepared a BY-2 cell line expressing Sec13:green fluorescent protein (GFP) to perform live cell imaging with red fluorescent protein-labeled ER or Golgi stacks. COPII binding to the ER in BY-2 cells is visualized as fluorescent punctate structures uniformly distributed over the surface of the ER, both after antibody staining as well as by Sec13:GFP expression. These structures are smaller and greatly outnumber the Golgi stacks. They are stationary, but have an extremely short half-life (<10 s). Without correlative imaging data on the export of membrane or lumenal ER cargo it was not possible to equate unequivocally these COPII binding loci with ERES. When a GDP-fixed Sar1 mutant is expressed, ER export is blocked and the visualization of COPII binding is perturbed. On the other hand, when secretion is inhibited by brefeldin A, COPII binding sites on the ER remain visible even after the Golgi apparatus has been lost. Live cell imaging in a confocal laser scanning microscope equipped with spinning disk optics allowed us to investigate the relationship between mobile Golgi stacks and COPII binding sites. As they move, Golgi stacks temporarily associated with COPII binding sites at their rims. Golgi stacks were visualized with their peripheries partially or fully occupied with COPII. In the latter case, Golgi stacks had the appearance of a COPII halo. Slow moving Golgi stacks tended to have more peripheral COPII than faster moving ones. However, some stationary Golgi stacks entirely lacking COPII were also observed. Our results indicate that, in a cell type with highly mobile Golgi stacks like tobacco BY-2, the Golgi apparatus is not continually linked to a single ERES. By contrast, Golgi stacks associate intermittently and sometimes concurrently with several ERES as they move.

Download full-text


Available from: Yaodong Yang, Sep 28, 2015
21 Reads
    • "As new data becomes available, researchers are often compelled to revise their standpoints on particular issues. My initial interpretation of ER-Golgi traffic, based on immunofluorescent studies in tobacco BY2 cells (Yang et al., 2005), led me to believe that ERESs were greatly in excess of Golgi stacks. Switching to leaf epidermal cells and perhaps more stringent localization criteria via transient expression of X-fluorescent protein tagged, convinced me of the validity of the secretory unit concept. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum (ER) is the gateway to the secretory pathway in all eukaryotic cells. Its products subsequently pass through the Golgi apparatus on the way to the cell surface (true secretion) or to the lytic compartment of the cell (vacuolar protein transport). In animal cells, the Golgi apparatus is present as a stationary larger order complex near the nucleus, and transport between the cortical ER and the Golgi complex occurs via an intermediate compartment which is transported on microtubules. By contrast, higher plant cells have discrete mobile Golgi stacks that move along the cortical ER, and the intermediate compartment is absent. Although many of the major molecular players involved in ER-Golgi trafficking in mammalian and yeast (Saccharomyces cerevisiae) cells have homologs in higher plants, the narrow interface (less than 500 nm) between the Golgi and the ER, together with the motility factor, makes the identification of the transport vectors responsible for bidirectional traffic between these two organelles much more difficult. Over the years, a controversy has arisen over the two major possibilities by which transfer can occur: through vesicles or direct tubular connections. In this article, four leading plant cell biologists attempted to resolve this issue. Unfortunately, their opinions are so divergent and often opposing that it was not possible to reach a consensus. Thus, we decided to let each tell his or her version individually. The review begins with an article by Federica Brandizzi that provides the necessary molecular background on coat protein complexes in relation to the so-called secretory units model for ER-Golgi transport in highly vacuolated plant cells. The second article, written by Chris Hawes, presents the evidence in favor of tubules. It is followed by an article from David Robinson defending the classical notion that transport occurs via vesicles. The last article, by Akihiko Nakano, introduces the reader to possible alternatives to vesicles or tubules, which are now emerging as a result of exciting new developments in high-resolution light microscopy in yeast. © 2015 American Society of Plant Biologists. All Rights Reserved.
    Plant physiology 04/2015; 168(2). DOI:10.1104/pp.15.00124 · 6.84 Impact Factor
  • Source
    • "In recent studies of plant vesicular trafficking, the spatial relationship between the ERES and Golgi apparatus has been a matter of controversy because exit from the ER has been difficult to visualize, and interpretations of the same observations have not necessarily reached a consensus. To explain these contradictions, two typical models have been proposed by two groups about the organelle relationship (Dasilva et al., 2004; Yang et al., 2005). One model predicts that protein export from the ER occurs via the sequential recruitment of inner and outer COPII components to form transport intermediates at the mobile, Golgi-associated ERES. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Small GTPase proteins play essential roles in the regulation of vesicular trafficking systems in eukaryotic cells. Two types of small GTPases, secretion-associated Ras-related protein (Sar) and ADP-ribosylation factor (Arf), act in the biogenesis of transport vesicles. Sar/Arf GTPases function as molecular switches by cycling between active, GTP-bound and inactive, GDP-bound forms, catalyzed by guanine nucleotide exchange factors and GTPase-activating proteins, respectively. Activated Sar/Arf GTPases undergo a conformational change, exposing the N-terminal amphipathic α-helix for insertion into membranes. The process triggers the recruitment and assembly of coat proteins to the membranes, followed by coated vesicle formation and scission. In higher plants, Sar/Arf GTPases also play pivotal roles in maintaining the dynamic identity of organelles in the secretory pathway. Sar1 protein strictly controls anterograde transport from the endoplasmic reticulum (ER) through the recruitment of plant COPII coat components onto membranes. COPII vesicle transport is responsible for the organization of highly conserved polygonal ER networks. In contrast, Arf proteins contribute to the regulation of multiple trafficking routes, including transport through the Golgi complex and endocytic transport. These transport systems have diversified in the plant kingdom independently and exhibit several plant-specific features with respect to Golgi organization, endocytic cycling, cell polarity and cytokinesis. The functional diversification of vesicular trafficking systems ensures the multicellular development of higher plants. This review focuses on the current knowledge of Sar/Arf GTPases, highlighting the molecular details of GTPase regulation in vesicle formation in yeast and advances in knowledge of the characteristics of vesicle trafficking in plants.
    Frontiers in Plant Science 08/2014; 5:411. DOI:10.3389/fpls.2014.00411 · 3.95 Impact Factor
  • Source
    • "The mechanism of transport of proteins from the ER to the Golgi in plant cells is not completely resolved. It is unclear whether plants utilize intermediate compartments in the movement of ER cargo to the Golgi (Yang et al., 2005). The exit of cargo from the ER to the Golgi in yeast and animal cells involves COPII vesicles, but COPII vesicles have yet to be visualized convincingly in plant cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Two classes of ER stress sensors are known in plants, membrane-associated basic leucine zipper (bZIP) transcription factors and RNA splicing factors. ER stress occurs under adverse environmental conditions and results from the accumulation of misfolded or unfolded proteins in the ER lumen. One of the membrane-associated transcription factors activated by heat and ER stress agents is bZIP28. In its inactive form, bZIP28 is a type II membrane protein with a single pass transmembrane domain, residing in the ER. bZIP28's N-terminus, containing a transcriptional activation domain, is oriented towards the cytoplasm and its C-terminal tail is inserted into the ER lumen. In response to stress, bZIP28 exits the ER and moves to the Golgi where it is proteolytically processed, liberating its cytosolic component which relocates to the nucleus to upregulate stress-response genes. bZIP28 is thought to sense stress through its interaction with the major ER chaperone, binding immunoglobulin protein (BIP). Under unstressed conditions, BIP binds to intrinsically disordered regions in bZIP28's lumen-facing tail and retains it in the ER. A truncated form of bZIP28, without its C-terminal tail is not retained in the ER but migrates constitutively to the nucleus. Upon stress, BIP releases bZIP28 allowing it to exit the ER. One model to account for the release of bZIP28 by BIP is that BIP is competed away from bZIP28 by the accumulation of misfolded proteins in the ER. However, other forces such as changes in energy charge levels, redox conditions or interaction with DNAJ proteins may also promote release of bZIP28 from BIP. Movement of bZIP28 from the ER to the Golgi is assisted by the interaction of elements of the COPII machinery with the cytoplasmic domain of bZIP28. Thus, the mobilization of bZIP28 in response to stress involves the dissociation of factors that retain it in the ER and the association of factors that mediate its further organelle-to-organelle movement.
    Frontiers in Plant Science 02/2014; 5:59. DOI:10.3389/fpls.2014.00059 · 3.95 Impact Factor
Show more