Article

Three structurally related, highly potent, peptides from the venom of Parabuthus transvaalicus possess divergent biological activity

Department of Chemistry, University of California, Davis, Davis, California, United States
Toxicon (Impact Factor: 2.58). 06/2005; 45(6):727-33. DOI: 10.1016/j.toxicon.2005.01.020
Source: PubMed

ABSTRACT The venom of South African scorpion Parabuthus transvaalicus contains a novel group of peptide toxins. These peptides resemble the long chain neurotoxins (LCN) of 60-70 residues with four disulfide bridges; however they are 58 residues long and have only three disulfide bridges constituting a new family of peptide toxins. Here we report the isolation and characterization of three new members of this mammal specific group of toxins. Dortoxin is a lethal peptide, bestoxin causes writhing in mice and altitoxin is a highly depressant peptide. Binding ability of these peptides to rat brain synaptosomes is tested. While the crude venom of P. transvaalicus enhances the binding of [(3)H] BTX to rat brain synaptosomes none of these individual toxins had a positive effect on binding. Although the primary structures of these toxins are very similar to birtoxin, their 3D models indicate significant differences. Dortoxin, bestoxin and altitoxin cumulatively constitute at least 20% of the peptide contained in the venom of P. transvaalicus and contribute very significantly to the toxicity of the venom of this medically important scorpion species. Therefore the amino acid sequences presented here can be used to make more specific and effective antivenins. Possible approaches to a systematic nomenclature of toxins are suggested.

Download full-text

Full-text

Available from: Isaac Pessah, Jul 02, 2015
0 Followers
 · 
600 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxins affecting sodium channels widely exist in the venoms of scorpions throughout the world. These molecules comprise an evolutionarily related peptide family with three shared features including conserved three-dimensional structure and gene organization, and similar function. Based on different pharmacological profiles and binding properties, scorpion sodium channel toxins are divided into alpha- and beta-groups. However, their evolutionary relationship is not yet established. Here, we report a gene isolated from the venom gland of scorpion Mesobuthus martensii which encodes a novel sodium channel toxin-like peptide of 64 amino acids, named Mesotoxin. The Mesotoxin gene is organized into three exons and two introns with the second intron location conserved across the family. This peptide is unusual in that it has only three disulfides and a long cysteine-free tail with loop size and structural characteristics close to beta-toxins. Evolutionary analysis favors its basal position in the origin of scorpion sodium channel toxins as a progenitor. The discovery of Mesotoxin will assist investigations into the key issue regarding the origin and evolution of scorpion toxins.
    FEBS Letters 11/2006; 580(25):5979-87. DOI:10.1016/j.febslet.2006.09.071 · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: From the venom of the scorpion Androctonus australis, we have isolated a new bioactive polypeptide termed AaBTX-L1. When tested on the insect voltage-gated Na(+) channel (para) of the fruit fly, this toxin was able to induce a clear shift in activation (V(1/2)), resulting in the opening of the channel at more negative membrane potentials. Furthermore, AaBTX-L1 was totally devoid of toxicity when injected into mice intracerebroventricularly and did not compete with radiolabeled voltage-gated K(+) and Na(+) channel toxins in binding experiments on rat brain synaptosomes. Using its N-terminal amino acid sequence to design degenerate primers, several clones were amplified by PCR from the A. australis venom gland cDNA library. As a consequence, seven full oligonucleotide sequences encoding "long-chain" polypeptides with only three disulfide bridges have been cloned for the first time and are described here. Remarkably, they share high similarity with the anti-insect toxin Birtoxin from Parabuthus transvaalicus.
    Biochemical and Biophysical Research Communications 08/2005; 333(2):524-30. DOI:10.1016/j.bbrc.2005.05.148 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scorpion venom is composed among other things of a large number of neurotoxic peptides affecting all major types of ion channels. The majority of the toxicity of the venom is attributed to the presence of these peptides. In our previous studies using a combination of HPLC and mass spectrometry, we showed that birtoxin like peptides are the major peptidic components of the venom of Parabuthus transvaalicus. These peptides are quite similar to each other differing by only few amino acid residues. In addition they all share a common N-terminus of eighteen amino acid residues. We hypothesize that neutralization of this domain will decrease the toxicity of the whole venom of P. transvaalicus. Polyclonal antibodies against the common N-terminal region of the peptides are generated. Here we show by bioassays that the polyclonal antibodies neutralize the venom of P. transvaalicus in a dose dependent manner and by mass spectrometry and western blotting that these peptides indeed react with the polyclonal antibodies. Previously antibodies generated against a single major toxic component of venom have proven to be an effective strategy for antivenin production. In the case of P. transvaalicus the generated antibody is against the majority of the peptidic fraction due to the presence of several highly similar and highly toxic components in this venom. We show that using the knowledge obtained through biochemical characterization studies it is possible to design very specific antibodies that will be useful for clinical applications against Parabuthus envenomation.
    Toxicon 03/2006; 47(2):144-9. DOI:10.1016/j.toxicon.2005.08.018 · 2.58 Impact Factor