Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells

Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
Oncogene (Impact Factor: 8.56). 07/2005; 24(26):4281-92. DOI: 10.1038/sj.onc.1208590
Source: PubMed

ABSTRACT Akt/PKB is a serine/threonine kinase that promotes tumor cell growth by phosphorylating transcription factors and cell cycle proteins. There is particular interest in finding tumor-specific substrates for Akt to understand how this protein functions in cancer and to provide new avenues for therapeutic targeting. Our laboratory sought to identify novel Akt substrates that are expressed in breast cancer. In this study, we determined that activated Akt is positively correlated with the protein expression of the transcription/translation factor Y-box binding protein-1 (YB-1) in primary breast cancer by screening tumor tissue microarrays. We therefore questioned whether Akt and YB-1 might be functionally linked. Herein, we illustrate that activated Akt binds to and phosphorylates the YB-1 cold shock domain at Ser102. We then addressed the functional significance of disrupting Ser102 by mutating it to Ala102. Following the stable expression of Flag:YB-1 and Flag:YB-1 (Ala102) in MCF-7 cells, we observed that disruption of the Akt phosphorylation site on YB-1 suppressed tumor cell growth in soft agar and in monolayer. This correlated with an inhibition of nuclear translocation by the YB-1(Ala102) mutant. In conclusion, YB-1 is a new Akt substrate and disruption of this specific site inhibits tumor cell growth.

Download full-text


Available from: Colleen C Nelson, Jul 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent surge in obesity has provided an impetus to better understand the mechanisms of adipogenesis, particularly in brown adipose tissue (BAT) because of its potential utilization for antiobesity therapy. Postnatal brown adipocytes arise from early muscle progenitors, but how brown fat lineage is determined is not completely understood. Here, we show that a multifunctional protein, Ewing Sarcoma (EWS), is essential for determining brown fat lineage during development. BATs from Ews null embryos and newborns are developmentally arrested. Ews mutant brown preadipocytes fail to differentiate due to loss of Bmp7 expression, a critical early brown adipogenic factor. We demonstrate that EWS, along with its binding partner Y-box binding protein 1 (YBX1), activates Bmp7 transcription. Depletion of either Ews or Ybx1 leads to loss of Bmp7 expression and brown adipogenesis. Remarkably, Ews null BATs and brown preadipocytes ectopically express myogenic genes. These results demonstrate that EWS is essential for early brown fat lineage determination.
    Developmental Cell 08/2013; 26(4):393-404. DOI:10.1016/j.devcel.2013.07.002 · 10.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells acquire anticancer drug resistance during chemotherapy, which aggravates cancer disease. MDR1 encoded from multidrug resistance gene 1 mainly causes multidrug resistance phenotypes of different cancer cells. In this study, we demonstrate that JNK1/2 activation by an extract from the root of Morus alba L. (White mulberry) reduces doxorubicin-resistant MCF-7/Dox cell viability by inhibiting YB-1 regulation of MDR1 gene expression. When MCF-7 or MCF-7/Dox cells, where MDR1 is highly expressed were treated with an extract from roots or leaves of Morus alba L., respectively, the root extract from the mulberry (REM) but not the leaf extract (LEM) reduced cell viabilities of both MCF-7 and MCF-7/Dox cells, which was enhanced by cotreatment with doxorubicin. REM but not LEM further inhibited YB-1 nuclear translocation and its regulation of MDR1 gene expression. Moreover, REM promoted phosphorylation of c-Jun NH2-terminal kinase 1/2 (JNK1/2) and JNK1/2 inhibitor, SP600125 and rescued REM inhibition of both MDR1 expression and viabilities in MCF-7/Dox cells. Consistently, overexpression of JNK1, c-Jun, or c-Fos inhibited YB-1-dependent MDR1 expression and reduced viabilities in MCF-7/Dox cells. In conclusion, our data indicate that REM-activated JNK-cJun/c-Fos pathway decreases the viability of MCF-7/Dox cells by inhibiting YB-1-dependent MDR1 gene expression. Thus, we suggest that REM may be useful for treating multidrug-resistant cancer cells.
    Evidence-based Complementary and Alternative Medicine 07/2013; 2013:741985. DOI:10.1155/2013/741985 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histology-based classifications and clinical parameters of head and neck squamous cell carcinoma (HNSCC) are limited in their clinical capacity to provide information on prognosis and treatment choice of HNSCC. The primary aim of this study was to analyse Y-box-binding protein-1 (YB-1) protein expression in different grading groups of HNSCC patients, and to correlate these findings with the disease-specific survival (DSS). We investigated the expression and cellular localisation of the oncogenic transcription/translation factor YB-1 by immunohistochemistry on tissue micro arrays in a total of 365 HNSCC specimens and correlated expression data with clinico-pathological parameters including DSS. Compared with control tissue from healthy individuals, a significantly (P<0.01) increased YB-1 protein expression was observed in high-grade HNSCC patients. By univariate survival data analysis, HNSCC patients with elevated YB-1 protein expression had a significantly (P<0.01) decreased DSS. By multivariate Cox regression analysis, high YB-1 expression and nuclear localisation retained its significance as a statistically independent (P<0.002) prognostic marker for DSS. Within grade 2 group of HNSCC patients, a subgroup defined by high nuclear and cytoplasmic YB-1 levels (co-expression pattern) in the cells of the tumour invasion front had a significantly poorer 5-year DSS rate of only 38% compared with overall 55% for grade 2 patients. Vice versa, the DSS rate was markedly increased to 74% for grade 2 cancer patients with low YB-1 protein expression at the same localisation. Our findings point to the fact that YB-1 expression in combination with histological classification in a double stratification strategy is superior to classical grading in the prediction of tumour progression in HNSCC.
    British Journal of Cancer 11/2011; 105(12):1864-73. DOI:10.1038/bjc.2011.491 · 4.82 Impact Factor