A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease.

Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA.
Nature Genetics (Impact Factor: 29.65). 06/2005; 37(5):526-31. DOI: 10.1038/ng1542
Source: PubMed

ABSTRACT Huntington disease is a fatal neurodegenerative disorder caused by expansion of a polyglutamine tract in the protein huntingtin (Htt), which leads to its aggregation in nuclear and cytoplasmic inclusion bodies. We recently identified 52 loss-of-function mutations in yeast genes that enhance the toxicity of a mutant Htt fragment. Here we report the results from a genome-wide loss-of-function suppressor screen in which we identified 28 gene deletions that suppress toxicity of a mutant Htt fragment. The suppressors are known or predicted to have roles in vesicle transport, vacuolar degradation, transcription and prion-like aggregation. Among the most potent suppressors was Bna4 (kynurenine 3-monooxygenase), an enzyme in the kynurenine pathway of tryptophan degradation that has been linked directly to the pathophysiology of Huntington disease in humans by a mechanism that may involve reactive oxygen species. This finding is suggestive of a conserved mechanism of polyglutamine toxicity from yeast to humans and identifies new candidate therapeutic targets for the treatment of Huntington disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The known genetic cause of Huntington's disease (HD) has fueled considerable progress in understanding its pathobiology and the development of therapeutic approaches aimed at correcting specific changes linked to the causative mutation. Among the most promising is reducing expression of mutant huntingtin protein (mHTT) with RNA interference or antisense oligonucleotides; human trials are now being planned. Zinc-finger transcriptional repression is another innovative method to reduce mHTT expression. Modulation of mHTT phosphorylation, chaperone upregulation, and autophagy enhancement represent attempts to alter cellular homeostasis to favor removal of mHTT. Inhibition of histone deacetylases (HDACs) remains of interest; recent work affirms HDAC4 as a target but questions the assumed centrality of its catalytic activity in HD. Phosphodiesterase inhibition, aimed at restoring synaptic function, has progressed rapidly to human trials. Deranged cellular signaling provides several tractable targets, but specificity and complexity are challenges. Restoring neurotrophic support in HD remains a key potential therapeutic approach. with several approaches being pursued, including brain-derived neurotrophic factor (BDNF) mimesis through tyrosine receptor kinase B (TrkB) agonism and monoclonal antibodies. An increasing understanding of the role of glial cells in HD has led to several new therapeutic avenues, including kynurenine monooxygenase inhibition, immunomodulation by laquinimod, CB2 agonism, and others. The complex metabolic derangements in HD remain under study, but no clear therapeutic strategy has yet emerged. We conclude that many exciting therapeutics are progressing through the development pipeline, and combining a better understanding of HD biology in human patients, with concerted medicinal chemistry efforts, will be crucial for bringing about an era of effective therapies. © 2014 International Parkinson and Movement Disorder Society
    Movement Disorders 08/2014; 29(11). · 5.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO.
    Journal of Biomolecular Screening 10/2014; · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins.
    PLoS ONE 12/2014; 9(12):e116003. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014