Article

Eotaxin-2 and eotaxin-3 expression is associated with persistent eosinophilic bronchial inflammation in patients with asthma after allergen challenge.

Department of Pulmonology, Lung Function Laboratory C2-P-62, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
Journal of Allergy and Clinical Immunology (Impact Factor: 12.05). 05/2005; 115(4):779-85. DOI: 10.1016/j.jaci.2004.11.045
Source: PubMed

ABSTRACT Eotaxin-1, eotaxin-2, and eotaxin-3 are chemokines involved in the activation and recruitment of eosinophils through activation of their main receptor, CC chemokine receptor 3. The differential roles of these chemokines still remain to be established. It has been suggested that eotaxin-1 is an important mediator in the early phase of allergen-induced recruitment of eosinophils into the airways. Eotaxin-2 and eotaxin-3 might play a role in the subsequent persistence of allergen-induced bronchial eosinophilia.
The aim of this study was to determine the expression of eotaxins and eosinophil counts in the bronchial mucosa of subjects with mild asthma after resolution of the late-phase asthmatic response (LAR).
The expression of eotaxins and eosinophil counts were determined in bronchial biopsy specimens obtained from 10 subjects with mild asthma 48 hours after diluent and allergen challenge by using immunohistochemistry. Positively stained cells were counted in a 125-mum-deep zone of the lamina propria.
Eotaxin-2 and eotaxin-3 expression in bronchial mucosa was significantly increased 48 hours after allergen challenge ( P = .001 and P = .013, respectively). At this time point, when marked tissue eosinophilia was still present, these increases were positively correlated with the magnitude of the LAR ( r = 0.72, P = .019 and r = 0.64, P = .046, respectively). Furthermore, eotaxin-2 expression was associated with the number of eosinophils after allergen challenge ( r = 0.72, P = .018).
Our findings suggest that eotaxin-2 and eotaxin-3 might account for the persistence of bronchial eosinophilia after resolution of the LAR.

0 Bookmarks
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage, eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone+HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone+HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone+HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa.
    Toxicology and Applied Pharmacology 09/2011; 257(3):309-18. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Short palate, lung and nasal epithelium clone 1 (SPLUNC1) is enriched in normal airway lining fluid, but is significantly reduced in airway epithelium exposed to a Th2 cytokine milieu. The role of SPLUNC1 in modulating airway allergic inflammation (e.g., eosinophils) remains unknown. We used SPLUNC1 knockout (KO) and littermate wild-type (C57BL/6 background) mice and recombinant SPLUNC1 protein to determine the impact of SPLUNC1 on airway allergic/eosinophilic inflammation, and to investigate the underlying mechanisms. An acute ovalbumin (OVA) sensitization and challenge protocol was used to induce murine airway allergic inflammation (e.g., eosinophils, eotaxin-2, and Th2 cytokines). Our results showed that SPLUNC1 in the bronchoalveolar lavage fluid of OVA-challenged wild-type mice was significantly reduced (P < 0.05), which was negatively correlated with levels of lung eosinophilic inflammation. Moreover, SPLUNC1 KO mice demonstrated significantly higher numbers of eosinophils in the lung after OVA challenges than did wild-type mice. Alveolar macrophages isolated from OVA-challenged SPLUNC1 KO versus wild-type mice had higher concentrations of baseline eotaxin-2 that was amplified by LPS (a known risk factor for exacerbating asthma). Human recombinant SPLUNC1 protein was applied to alveolar macrophages to study the regulation of eotaxin-2 in the context of Th2 cytokine and LPS stimulation. Recombinant SPLUNC1 protein attenuated LPS-induced eotaxin-2 production in Th2 cytokine-pretreated murine macrophages. These findings demonstrate that SPLUNC1 inhibits airway eosinophilic inflammation in allergic mice, in part by reducing eotaxin-2 production in alveolar macrophages.
    American Journal of Respiratory Cell and Molecular Biology 04/2012; 47(2):253-60. · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Eosinophilic inflammation is implicated in asthma. Eotaxin 1-3 regulate eosinophil trafficking into the airways along with other chemotactic factors. However, the epithelial and bronchoalveolar lavage (BAL) cell expression of these chemokines in relation to asthma severity and eosinophilic phenotypes has not been addressed. OBJECTIVE: To measure the expression of the three eotaxin isoforms in bronchoscopically obtained samples and compare them with clinically relevant parameters between normal subjects and patients with asthma. METHODS: Normal subjects and patients with asthma of varying severity recruited through the Severe Asthma Research Program underwent clinical assessment and bronchoscopy with airway brushing and BAL. Eotaxin 1-3 mRNA/protein were measured in epithelial and BAL cells and compared with asthma severity, control and eosinophilic inflammation. RESULTS: Eotaxin-2 and eotaxin-3 mRNA and eotaxin-2 protein were increased in airway epithelial brushings from patients with asthma and were highest in cases of severe asthma (p values 0.0155, 0.0033 and 0.0006, respectively), with eotaxin-2 protein increased with age at onset. BAL cells normally expressed high levels of eotaxin-2 mRNA/protein but BAL fluid levels of eotaxin-2 were lowest in severe asthma. Epithelial eotaxin-2 and eotaxin-3 mRNA/protein was associated with sputum eosinophilia, lower forced expiratory volume in 1 s and more asthma exacerbations. Airway epithelial cell eotaxin-2 protein differed by asthma severity only in those with late onset disease, and tended to be highest in those with late onset eosinophilic asthma. CONCLUSIONS: Epithelial eotaxin-2 and 3 are increased in asthma and severe asthma. Their expression may contribute to luminal migration of eosinophils, especially in later onset disease, asthma control and severity.
    Thorax 09/2012; · 8.38 Impact Factor

Full-text (2 Sources)

View
21 Downloads
Available from
May 15, 2014