Gene-expression profiling using suppression-subtractive hybridization and cDNA microarray in rat mononuclear cells in response to welding-fume exposure.

Center for Occupational Toxicology, Occupational Safety & Health Research Institute, KOSHA, Daejeon, Republic of Korea.
Toxicology and Industrial Health (Impact Factor: 1.56). 07/2004; 20(1-5):77-88. DOI: 10.1191/0748233704th200oa
Source: PubMed

ABSTRACT Welders with radiographic pneumoconiosis abnormalities have shown a gradual clearing of the X-ray identified effects following removal from exposure. In some cases, the pulmonary fibrosis associated with welding fumes appears in a more severe form in welders. Accordingly, for the early detection of welding-fume-exposure-induced pulmonary fibrosis, the gene expression profiles of peripheral mononuclear cells from rats exposed to welding fumes were studied using suppression-subtractive hybridization (SSH) and a cDNA microarray. As such, Sprague-Dawley rats were exposed to a stainless steel arc welding fume for 2 h/day in an inhalation chamber with a 1107.5 +/- 2.6 mg/m3 concentration of total suspended particulate (TSP) for 30 days. Thereafter, the total RNA was extracted from the peripheral blood mononuclear cells, the cDNA synthesized from the total RNA using the SMART PCR cDNA method, and SSH performed to select the welding-fume-exposure-regulated genes. The cDNAs identified by the SSH were then cloned into a plasmid miniprep, sequenced and the sequences analysed using the NCBI BLAST programme. In the SSH cloned cDNA microarray analysis, five genes were found to increase their expression by 1.9-fold or more, including Rgs 14, which plays an important function in cellular signal transduction pathways; meanwhile 36 genes remained the same and 30 genes decreased their expression by more than 59%, including genes associated with the immune response, transcription factors and tyrosine kinases. Among the 5200 genes analysed, 256 genes (5.1%) were found to increase their gene expression, while 742 genes (15%) decreased their gene expression in response to the welding-fume exposure when tested using a commercial 5.0k DNA microarray. Therefore, unlike exposure to other toxic substances, prolonged welding-fume exposure was found to substantially downregulate many genes.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Welding fume inhalation affects the immune system of exposed workers. Manganese (Mn) in welding fume may induce immunosuppressive effects. The goal was to determine if Mn in welding fume alters immunity by reducing the number of circulating total leukocytes and specific leukocyte sub-populations. Sprague-Dawley rats were treated by intratracheal instillation (ITI) with either a single dose (2.00 mg/rat) or repeated doses (0.125 or 2.00 mg/rat for 7 weeks) with welding fumes that contained different levels of Mn. Additional rats were treated by ITI once a week for 7 weeks with the two doses of manganese chloride (MnCl₂). Bronchoalveolar lavage was performed to assess lung inflammation. Also, whole blood was recovered, and the number of circulating total leukocytes, as well as specific lymphocyte subsets, was determined by flow cytometry. The welding fume highest in Mn content significantly increased lung inflammation, injury, and production of inflammatory cytokines and chemokines compared to all other treatment groups. In addition, the same group expressed significant decreases in the number of circulating CD4⁺ and CD8⁺ T-lymphocytes after a single exposure, and significant reductions in the number of circulating total lymphocytes, primarily CD4⁺ and CD8⁺ T-lymphocytes, after repeated exposures (compared to control values). Repeated MnCl₂ exposure led to a trend of a reduction (but not statistically significant) in circulating total lymphocytes, attributable to the changes in the CD4⁺ T-lymphocyte population levels. The welding fume with the lower concentration of Mn had no significant effect on the numbers of blood lymphocytes and lymphocyte subsets compared to control values. Evidence from this study indicates that pulmonary exposure to certain welding fumes cause decrements in systemic immune cell populations, specifically circulating T-lymphocytes, and these alterations in immune cell number are not dependent exclusively on Mn, but likely a combination of other metals present in welding fume.
    Journal of Immunotoxicology 02/2012; 9(2):184-92. · 1.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To identify changes in gene expression in the airways among welders, with and without lower airway symptoms, working in black steel. Included were 25 male, non-smoking welders. Each welder was sampled twice; before exposure (after vacation), and after 1 month of exposure. From the welders (14 symptomatic, of whom 7 had asthma-like symptoms), RNA from induced sputum was obtained for gene expression analysis. Messenger RNA from a subset of the samples (n = 7) was analysed with microarray technology to identify genes of interest. These genes were further analysed using quantitative PCR (qPCR; n = 22). By comparing samples before and after exposure, the microarray analysis resulted in several functional annotation clusters: the one with the highest enrichment score contained "response to wounding", "inflammatory response" and "defence response". Seven genes were analysed by qPCR: granulocyte colony-stimulating factor 3 receptor (CSF3R), superoxide dismutase 2, interleukin 8, glutathione S-transferase pi 1, tumour necrosis factor alpha-induced protein 6 (TNFAIP6), interleukin 1 receptor type II and matrix metallopeptidase 25 (MMP25). Increased levels of CSF3R, TNFAIP6 and MMP25 were indicated among asthmatic subjects compared to non-symptomatic subjects, although the differences did not reach significance. Workers' exposure to welding fumes changed gene expression in the lower airways in genes involved in inflammatory and defence response. Thus, microarray and qPCR technique can demonstrate markers of exposure to welding fumes and possible disease-related markers. However, further studies are needed to verify genes involved and to further characterise the mechanism for welding fumes-associated lower airway symptoms.
    International Archives of Occupational and Environmental Health 01/2011; 84(1):105-13. · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arc welding processes generate complex aerosols composed of potentially hazardous metal fumes and gases. Millions of workers worldwide are exposed to welding aerosols daily. A health effect of welding that is of concern to the occupational health community is the development of immune system dysfunction. Increased severity, frequency, and duration of upper and lower respiratory tract infections have been reported among welders. Specifically, multiple studies have observed an excess mortality from pneumonia in welders and workers exposed to metal fumes. Although several welder cohort and experimental animal studies investigating the adverse effects of welding fume exposure on immune function have been performed, the potential mechanisms responsible for these effects are limited. The objective of this report was to review both human and animal studies that have examined the effect of welding fume pulmonary exposure on local and systemic immune responses.
    Journal of Immunotoxicology 06/2012; · 1.57 Impact Factor